Lim, Grewo et al. published their research in Pain in 2005 | CAS: 6698-26-6

(2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-methyltetrahydrofuran-3-ol (cas: 6698-26-6) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application of 6698-26-6

Evidence for a long-term influence on morphine tolerance after previous morphine exposure: role of neuronal glucocorticoid receptors was written by Lim, Grewo;Wang, Shuxing;Zeng, Qing;Sung, Backil;Mao, Jianren. And the article was included in Pain in 2005.Application of 6698-26-6 This article mentions the following:

Opioid analgesic tolerance is a pharmacol. phenomenon that overtime diminishes the opioid analgesic effect. However, it remains unknown as to whether a previous opioid exposure would have a long-term influence on opioid tolerance upon subsequent opioid administration. Here, we show that the onset and degree of antinociceptive tolerance to a subsequent cycle of morphine exposure were substantially exacerbated in rats made tolerant to and then recovered from previous morphine administration, indicating a long-term influence from a previous morphine exposure on the development of morphine tolerance. Mechanistically, morphine exposure induced a cAMP and protein kinase A-dependent upregulation of neuronal glucocorticoid receptors (GR) within the spinal cord dorsal horn, which was maintained after discontinuation of morphine administration and significantly enhanced upon a second cycle of morphine exposure. Prevention of the GR upregulation with GR antisense oligonucleotides as well as inhibition of GR activation with the GR antagonist RU38486 effectively prevented the exacerbated morphine tolerance after subsequent cycles of morphine exposure. The results indicate that a previous morphine exposure could induce lasting cellular changes mediated through neuronal GR and influence morphine analgesia upon a subsequent exposure. These findings may have significant implications in clin. opioid therapy and substance abuse. In the experiment, the researchers used many compounds, for example, (2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-methyltetrahydrofuran-3-ol (cas: 6698-26-6Application of 6698-26-6).

(2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-methyltetrahydrofuran-3-ol (cas: 6698-26-6) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application of 6698-26-6

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Gokmen-Polar, Y et al. published their research in The American journal of physiology in 1996 | CAS: 6698-26-6

(2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-methyltetrahydrofuran-3-ol (cas: 6698-26-6) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Electric Literature of C10H13N5O2

Insulin sensitizes beta-agonist and forskolin-stimulated lipolysis to inhibition by 2′,5′-dideoxyadenosine. was written by Gokmen-Polar, Y;Coronel, E C;Bahouth, S W;Fain, J N. And the article was included in The American journal of physiology in 1996.Electric Literature of C10H13N5O2 This article mentions the following:

In isolated rat adipocytes incubated in the absence of insulin, 2′,5′-dideoxyadenosine blocked the increase in total adenosine 3′,5′-cyclic monophosphate (cAMP) accumulation due to beta 1- or beta 3-catecholamine agonists and forskolin without affecting their stimulation of lipolysis. The inhibition of cAMP accumulation by 2′,5′-dideoxyadenosine was not reflected in the total cytosolic cAMP-dependent protein kinase A activity, suggesting that the inhibition of cAMP occurred in cellular compartments distinct from those involved in the regulation of bulk protein kinase A activity. However, there was a good correlation between effects of lipolytic agents on cytosolic protein kinase A activity in fat cell extracts and lipolysis. Furthermore, it was possible to see an inhibition of the increase due to beta-agonists in cAMP accumulation, protein kinase A activity, and lipolysis by 2′,5′-dideoxyadenosine in the presence of insulin. These data suggest that the readily measurable accumulation of cAMP seen with catecholamines in the absence of insulin is in a compartment separate from that involved in protein kinase A activation. In the experiment, the researchers used many compounds, for example, (2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-methyltetrahydrofuran-3-ol (cas: 6698-26-6Electric Literature of C10H13N5O2).

(2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-methyltetrahydrofuran-3-ol (cas: 6698-26-6) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Electric Literature of C10H13N5O2

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Roa, Jinae N et al. published their research in American journal of physiology. Cell physiology in 2016 | CAS: 6698-26-6

(2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-methyltetrahydrofuran-3-ol (cas: 6698-26-6) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.COA of Formula: C10H13N5O2

Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells. was written by Roa, Jinae N;Tresguerres, Martin. And the article was included in American journal of physiology. Cell physiology in 2016.COA of Formula: C10H13N5O2 This article mentions the following:

Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2′,5′-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology. In the experiment, the researchers used many compounds, for example, (2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-methyltetrahydrofuran-3-ol (cas: 6698-26-6COA of Formula: C10H13N5O2).

(2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-methyltetrahydrofuran-3-ol (cas: 6698-26-6) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.COA of Formula: C10H13N5O2

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Roa, Jinae N et al. published their research in American journal of physiology. Cell physiology in 2016 | CAS: 6698-26-6

(2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-methyltetrahydrofuran-3-ol (cas: 6698-26-6) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.COA of Formula: C10H13N5O2

Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells. was written by Roa, Jinae N;Tresguerres, Martin. And the article was included in American journal of physiology. Cell physiology in 2016.COA of Formula: C10H13N5O2 This article mentions the following:

Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2′,5′-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology. In the experiment, the researchers used many compounds, for example, (2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-methyltetrahydrofuran-3-ol (cas: 6698-26-6COA of Formula: C10H13N5O2).

(2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-methyltetrahydrofuran-3-ol (cas: 6698-26-6) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.COA of Formula: C10H13N5O2

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Lai, Yuan-Shu et al. published their research in Journal of Agricultural and Food Chemistry in 2010 | CAS: 6698-26-6

(2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-methyltetrahydrofuran-3-ol (cas: 6698-26-6) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Category: tetrahydrofurans

Antiplatelet Activity of α-Lipoic Acid was written by Lai, Yuan-Shu;Shih, Ching-Yu;Huang, Yu-Feng;Chou, Tz-Chong. And the article was included in Journal of Agricultural and Food Chemistry in 2010.Category: tetrahydrofurans This article mentions the following:

α-Lipoic acid (ALA) is often used as a dietary supplement to prevent and treat chronic diseases associated with excessive oxidative stress. The aim of this study was to investigate the mechanisms of the antiplatelet activity of ALA. ALA significantly inhibited collagen-induced platelet aggregation, thromboxane B2 (TXB2) formation, Ca2+ mobilization, and protein kinase Cα (PKCα) activation, but ALA itself increased cAMP formation in rabbit washed platelets. However, the effects of ALA on the above platelet responses were markedly reversed by the addition of 2’5′-ddAdo, an adenylate cyclase inhibitor. Addnl., increased reactive oxygen species (ROS) formation and cyclooxygenase-1 activity stimulated by arachidonic acid were inhibited by ALA. In conclusion, we demonstrated that ALA possesses an antiplatelet activity, which may be associated with an elevation of cAMP formation, involving subsequent inhibition of TXA2, Ca2+ mobilization, and PKCα-mediated pathways. Moreover, inhibition of ROS formation and increase of platelet membrane fluidity may also involve its actions. In the experiment, the researchers used many compounds, for example, (2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-methyltetrahydrofuran-3-ol (cas: 6698-26-6Category: tetrahydrofurans).

(2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-methyltetrahydrofuran-3-ol (cas: 6698-26-6) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Category: tetrahydrofurans

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem