Nobre, C. et al. published their research in LWT–Food Science and Technology in 2018 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Application In Synthesis of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Production of fructo-oligosaccharides by Aspergillus ibericus and their chemical characterization was written by Nobre, C.;Alves Filho, E. G.;Fernandes, F. A. N.;Brito, E. S.;Rodrigues, S.;Teixeira, J. A.;Rodrigues, L. R.. And the article was included in LWT–Food Science and Technology in 2018.Application In Synthesis of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol This article mentions the following:

A great demand for prebiotics is driving the search for new sources of fructo-oligosaccharides (FOS) producers and for FOS with differentiated functionalities. In the present work, FOS production by a new isolated strain of Aspergillus ibericus was evaluated. The temperature of fermentation and initial pH were optimized in shaken flask to yield a maximal FOS production, through a central composite exptl. design. FOS were produced in a one-step bioprocess using the whole cells of the microorganism. The model (R2 = 0.918) predicted a yield of 0.56, exptl. 0.53 ± 0.03 gFOS.g-1initial sucrose was obtained (37.0°C and a pH of 6.2). A yield of 0.64 ± 0.02 gFOS.g-1initial sucrose was obtained in the bioreactor, at 38 h, with a content of 118 ± 4 g. L-1 in FOS and a purity of 56 ± 3%. The chem. structure of the FOS produced by A. ibericus was determined by HPLC and NMR. FOS were identified as 1-kestose, nystose, and 1F-fructofuranosylnystose. In conclusion, A. ibericus was found to be a good alternative FOS producer. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Application In Synthesis of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Application In Synthesis of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Namazi, Hassan et al. published their research in Polymer Bulletin (Heidelberg, Germany) in 2022 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Reference of 582-52-5

New glyco-copolymers containing α-D-glucofuranose and α-D-mannofuranose groups synthesized by free-radical polymerization of sugar-based monomers was written by Namazi, Hassan;Pooresmaeil, Malihe;Oskooie, Maryam Nasiri. And the article was included in Polymer Bulletin (Heidelberg, Germany) in 2022.Reference of 582-52-5 This article mentions the following:

Carbohydrates are safe materials with the potential of application in various areas, hence, in recent years, a growing interest has been attracted to the synthesis of the new systems containing carbohydrates. By considering this and based on the carbohydrates merits, in this work, the new two different random glyco-copolymers were prepared through the polymerization of the α-D-glucofuranose- and α-D-mannofuranose-based monomers. A facile free-radical polymerization technique was utilized for glyco-copolymers synthesis in the presence of benzoyl peroxide (BPO) as an initiator. Fourier transform IR (FT-IR) technique was used for investigating the achievements in the synthesis of copolymers. In the proton NMR (1H NMR) spectroscopy anal., the absence of any peaks in the rigon related to vinylic protons confirmed the successful synthesizing of glyco-copolymers. As well as, enhancing the intensity of the peaks in the 0.60-2.39 ppm which is related to the formed aliphatic protons as a result of vinylic glycomonomers copolymerization is the strong witness for success in copolymerization In this way and by considering the special structure of the prepared glyco-copolymers and based on the review of the published literature, it is expected that the prepared new glyco-copolymers be a good candidate for biomedicinal applications. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Reference of 582-52-5).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Reference of 582-52-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Ishii, Ayako et al. published their research in Behavior genetics in 2011 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Product Details of 126-14-7

B6-MSM consomic mouse strains reveal multiple loci for genetic variation in sucrose octaacetate aversion. was written by Ishii, Ayako;Koide, Tsuyoshi;Takahashi, Aki;Shiroishi, Toshihiko;Hettinger, Thomas P;Frank, Marion E;Savoy, Lawrence D;Formaker, Bradley K;Yertutanol, Sezen;Lionikas, Arimantas;Blizard, David A. And the article was included in Behavior genetics in 2011.Product Details of 126-14-7 This article mentions the following:

Based on crosses among inbred strains derived principally from M. m. domesticus, sucrose octaacetate (SOA) aversion in laboratory mice has been thought for many years to be controlled by a single genetic locus (Soa) located on distal chromosome (Chr) 6. To expand knowledge of the genetic basis underlying SOA aversion, we have studied the M. m. molossinus derived strain (MSM) and MSM consomic strains on a M. m. domesticus (C57BL/6J: B6) host background. Using two-bottle preference procedures, MSM mice avoided 0.1 mM and 1 mM SOA while B6 mice were indifferent to 0.1 mM and exhibited slight aversion to 1 mM SOA. Preference tests of 16 available consomic strains implicated Chr 2, 4 and 15 in SOA aversion in addition to the prominent effect of the known Soa locus on Chr 6 (implicated by study of two congenic strains). The originally defined Soa locus is presumably associated with one or more members of the cluster of Tas2r genes on distal Chr 6 that code for bitter taste receptors. Our results point to the possible role of established Tas2r genes on Chr 2 and 15, as well as to genes not coding for bitter receptors (Chr 4), in SOA aversion. SOA aversion emerges from this consomic screen as being definitively under polygenic control. The genetic diversity captured by the MSM model system is shown to be a valuable tool to complement the limited genetic variation in the commonly used stocks derived from M m. domesticus. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Product Details of 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Product Details of 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Awesome and Easy Science Experiments about 51856-79-2

Compounds in my other articles are similar to this one(Methyl 2-(1-methyl-1H-pyrrol-2-yl)acetate)Product Details of 51856-79-2, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Product Details of 51856-79-2. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: Methyl 2-(1-methyl-1H-pyrrol-2-yl)acetate, is researched, Molecular C8H11NO2, CAS is 51856-79-2, about Synthesis and antifungal activity of some new 1,2,4-triazole and furan containing compounds. Author is Shehata, Ihsan A..

Several new 1,2,4-triazole analogs attached to substituted Ph, pyrrole or furan 5-membered heterocycles were synthesized and screened for their antimicrobial activity. Bromination of Me 2-methylfuran-3-carboxylate, followed by ring closure with aniline, gave 5,6-dihydro-4-oxo-5-phenyl-4H-furo[2,3-c]pyrrole (I) in 55% yield (two steps). Compounds I and 3-(1-methyl-2-pyrrolylmethyl)-4-phenyl-5-(4-chlorophenylcarbamoylmethylthio)-1,2,4-triazole showed a prominent activity against C. albicans and S. cerevisiae.

Compounds in my other articles are similar to this one(Methyl 2-(1-methyl-1H-pyrrol-2-yl)acetate)Product Details of 51856-79-2, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem