Han, Chunhua et al. published their research in CCS Chemistry in 2022 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Electric Literature of C12H20O6

Site-selective palladium-catalyzed 1,1-arylamination of terminal alkenes was written by Han, Chunhua;Cai, Libo;Zhang, Dongquan;Pan, Rui;Li, Qiuyu;Lin, Aijun;Yao, Hequan. And the article was included in CCS Chemistry in 2022.Electric Literature of C12H20O6 This article mentions the following:

Many of the commonly used pharmaceuticals and biol. active natural products are nitrogen-containing compounds Recently, the transition-metal-catalyzed or the radical-mediated 1,2-carboamination of alkenes has been well explored to access amine scaffolds. However, synthetic strategies toward the 1,1-carboamination of alkenes are severely limited. Herein, we describe a method to achieve the 1,1-arylamination using readily available building blocks enabled by palladium catalysis. This sequential three step-Heck arylation, metal migration, followed by aza-1,6-Micheal addition process exhibits excellent chemo- and regioselectivity. To showcase the potential as a method for diversity-oriented drug discovery, the modification of numerous structurally complex bioactive mols. was also successfully performed. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Electric Literature of C12H20O6).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Electric Literature of C12H20O6

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Ay, Emriye et al. published their research in Croatica Chemica Acta in 2021 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.SDS of cas: 582-52-5

Click reactivity of azide-modified polyvinyl chloride as an entry to glycopolymer scaffolds was written by Ay, Emriye;Yenil, Nilgun. And the article was included in Croatica Chemica Acta in 2021.SDS of cas: 582-52-5 This article mentions the following:

We report the synthesis of new carbohydrate/triazole polymers based on poly(viny chloride) (PVC). Azide incorporation into com. available PVC was carried out using nucleophilic substitution and Cu-catalyzed reaction of the resulting PVC-N3 using three alkynyl-containing acetonide-protected monosaccharides (based on D-glucose and D-galactose) provided a set of PVC-based polymers incorporating a triazolyl linkage with monosaccharide moieties present on the periphery. Modified polymers were characterized by using Fourier transform IR (FT-IR), NMR (1H-NMR and 13C-NMR) spectroscopy, together with thermogravimetric and surface morphol. anal. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5SDS of cas: 582-52-5).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.SDS of cas: 582-52-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Renou, Sophie et al. published their research in Journal of Magnetic Resonance in 2022 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application In Synthesis of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol

Radio-frequency pulse calibration using the MISSTEC sequence was written by Renou, Sophie;Pontabry, Julien;Assemat, Gaetan;Akoka, Serge. And the article was included in Journal of Magnetic Resonance in 2022.Application In Synthesis of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol This article mentions the following:

NMR sequences are composed of multiple radio-frequency pulses. Probe adjustment, sample concentration and solvent influence the loading factor, therefore these parameters also impact the validity of flip angles. The commonly used method to calibrate RF pulses is to measure a nutation curve by varying the pulse duration. However, this method is impacted by off-resonance effects, radiation damping and B1 and B0 inhomogeneities. Furthermore, it is important to avoid partial saturation In this work, the MISSTEC sequence is proposed for pulse calibration. This sequence takes only 8 s or 2 min for 1H or 13C calibration, resp. High accuracy (with an error below 1%) was obtained for both nuclei. Therefore, the calibrations can be done rapidly and accurately. Furthermore, the MISSTEC measurement could be performed on each sample – in an automated way- before acquisitions, after which the calibration found could be automatically used. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Application In Synthesis of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application In Synthesis of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Upadhyaya, Kapil et al. published their research in Angewandte Chemie, International Edition in 2021 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.HPLC of Formula: 582-52-5

Direct Experimental Characterization of a Bridged Bicyclic Glycosyl Dioxacarbenium Ion by 1H and 13C NMR Spectroscopy: Importance of Conformation on Participation by Distal Esters was written by Upadhyaya, Kapil;Subedi, Yagya P.;Crich, David. And the article was included in Angewandte Chemie, International Edition in 2021.HPLC of Formula: 582-52-5 This article mentions the following:

Low-temperature NMR studies with a 4-C-methyl-4-O-benzoyl galactopyranosyl donor enable the observation and characterization of a bridged bicyclic dioxacarbenium ion arising from participation by a distal ester. Variable-temperature NMR studies reveal this bridged ion to decompose at temperatures above ≈ -30°C. In the absence of the Me group, the formation of a bicyclic ion is not observed It is concluded that participation by typical secondary distal esters in glycosylation reactions is disfavored in the ground state conformation of the ester from which it is stereo-electronically impossible. Methylation converts the secondary ester to a conformationally more labile tertiary ester, removes this barrier, and renders participation more favorable. Nevertheless, the minor changes in selectivity in model glycosylation reactions on going from the secondary to the tertiary esters at both low and room temperature argue against distal group participation being a major stereo-directing factor even for the tertiary system. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5HPLC of Formula: 582-52-5).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.HPLC of Formula: 582-52-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Morelli, Laura et al. published their research in ACS Chemical Biology in 2021 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Synthetic Route of C12H20O6

Glycan Array Evaluation of Synthetic Epitopes between the Capsular Polysaccharides from Streptococcus pneumoniae 19F and 19A was written by Morelli, Laura;Lay, Luigi;Santana-Mederos, Darielys;Valdes-Balbin, Yury;Verez Bencomo, Vicente;van Diepen, Angela;Hokke, Cornelis H.;Chiodo, Fabrizio;Compostella, Federica. And the article was included in ACS Chemical Biology in 2021.Synthetic Route of C12H20O6 This article mentions the following:

Vaccination represents the most effective way to prevent invasive pneumococcal diseases. The glycoconjugate vaccines licensed so far are obtained from capsular polysaccharides (CPSs) of the most virulent serotypes. Protection is largely limited to the specific vaccine serotypes, and the continuous need for broader coverage to control the outbreak of emerging serotypes is pushing the development of new vaccine candidates. Indeed, the development of efficacious vaccine formulation is complicated by the high number of bacterial serotypes with different CPSs. In this context, to simplify vaccine composition, we propose the design of new saccharide fragments containing chem. structures shared by different serotypes as cross-reactive and potentially cross-protective common antigens. In particular, we focused on Streptococcus pneumoniae (Sp) 19A and 19F. The CPS repeating units of Sp 19F and 19A are very similar and share a common structure, the disaccharide ManNAc-β-(1→4)-Glc (A-B). Herein, we describe the synthesis of a small library of compounds containing different combinations of the common 19F/19A disaccharide. The six new compounds were tested with a glycan array to evaluate their recognition by antibodies in reference group 19 antisera and factor reference antisera (reacting against 19F or 19A). The disaccharide A-B, phosphorylated at the upstream end, emerged as a hit from the glycan array screening because it is strongly recognized by the group 19 antisera and by the 19F and 19A factor antisera, with similar intensity compared with the CPSs used as controls. Our data give a strong indication that the phosphorylated disaccharide A-B can be considered a common epitope among different Sp 19 serotypes. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Synthetic Route of C12H20O6).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Synthetic Route of C12H20O6

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Herrera-Gonzalez, Irene et al. published their research in Journal of Organic Chemistry in 2020 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.HPLC of Formula: 582-52-5

Stereoselective Synthesis of Iminosugar 2-Deoxy(thio)glycosides from Bicyclic Iminoglycal Carbamates Promoted by Cerium(IV) Ammonium Nitrate and Cooperative Bronsted Acid-Type Organocatalysis was written by Herrera-Gonzalez, Irene;Sanchez-Fernandez, Elena M.;Sau, Abhijit;Nativi, Cristina;Garcia Fernandez, Jose M.;Galan, M. Carmen;Ortiz Mellet, Carmen. And the article was included in Journal of Organic Chemistry in 2020.HPLC of Formula: 582-52-5 This article mentions the following:

The first examples of iminosugar-type 2-deoxy(thio)glycoside mimetics are reported. The key step is the activation of a bicyclic iminoglycal carbamate to generate a highly reactive acyliminium cation. Cerium(IV) ammonium nitrate efficiently promoted the formation of 2-deoxy S-glycosides in the presence of thiols, probably by in situ generation of catalytic HNO3, with complete α-stereoselectivity. Cooperative phosphoric acid/Schreiner’s thiourea organocatalysis proved better suited for generating 2-deoxy O-glycosides, significantly broadening the scope of the approach. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5HPLC of Formula: 582-52-5).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.HPLC of Formula: 582-52-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Cruz, Daniel A. et al. published their research in Organic Letters in 2021 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Synthetic Route of C12H20O6

Iron(II) and Copper(I) Control the Total Regioselectivity in the Hydrobromination of Alkenes was written by Cruz, Daniel A.;Sinka, Victoria;de Armas, Pedro;Steingruber, Hugo Sebastian;Fernandez, Israel;Martin, Victor S.;Miranda, Pedro O.;Padron, Juan I.. And the article was included in Organic Letters in 2021.Synthetic Route of C12H20O6 This article mentions the following:

A new method that allowed the complete control of the regioselectivity of the hydrobromination reaction of alkenes was described. Herein, a radical procedure with TMSBr and oxygen as common reagents, where the formation of the anti-Markovnikov product occurs in the presence of ppm amounts of the Cu(I) species and the formation of the Markovnikov product occurred in the presence of 30 mol % iron(II) bromide was reported. D. functional theory calculations combined with Fukui’s radical susceptibilities support the obtained results. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Synthetic Route of C12H20O6).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Synthetic Route of C12H20O6

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Jakas, Andreja et al. published their research in Journal of Organic Chemistry in 2020 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Safety of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol

Multicomponent Approach to Homo- and Hetero-Multivalent Glycomimetics Bearing Rare Monosaccharides was written by Jakas, Andreja;Visnjevac, Aleksandar;Jeric, Ivanka. And the article was included in Journal of Organic Chemistry in 2020.Safety of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol This article mentions the following:

We applied a multicomponent approach to access a library of densely functionalized homo- and hetero-multivalent glycomimetics comprising aldehyde, amine, and isocyanide components related to isopropylidene-protected D-fructose, L-sorbose, D-galactose, and D-allose. Passerini products were obtained in very good yields (up to 78%) and high diastereoselectivities (up to 98:2). Three types of products were obtained by the Ugi reaction; along with the “classical” four-component product, α-acylaminoamides, a three-component α-aminoamides, and a four- component α-aminoacylamides were isolated. The presence of multiple pathways is rationalized by the structure of the imidate intermediate, mainly influenced by the amine component. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Safety of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Safety of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Zhou, Siai et al. published their research in Organic Letters in 2021 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Related Products of 582-52-5

ZnI2-Directed Stereocontrolled α-Glucosylation was written by Zhou, Siai;Zhong, Xuemei;Guo, Aoxin;Xiao, Qian;Ao, Jiaming;Zhu, Wanmeng;Cai, Hui;Ishiwata, Akihiro;Ito, Yukishige;Liu, Xue-Wei;Ding, Feiqing. And the article was included in Organic Letters in 2021.Related Products of 582-52-5 This article mentions the following:

Here we report a glucosylation strategy mediated by ZnI2, a cheap and mild Lewis acid, for the highly stereoselective construction of 1,2-cis-O-glycosidic linkages using easily accessible and common 4,6-O-tethered glucosyl donors. The versatility and effectiveness of the α-glucosylation strategy were demonstrated successfully with various acceptors, including complex alcs. This approach demonstrates the feasibility of the modular synthesis of various α-glucans with both linear and branched backbone structures. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Related Products of 582-52-5).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Related Products of 582-52-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Zhao, Gaoyuan et al. published their research in Chemical Communications (Cambridge, United Kingdom) in 2021 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Computed Properties of C12H20O6

Visible-light-induced photo-acid catalysis: application in glycosylation with O-glycosyl trichloroacetimidates was written by Zhao, Gaoyuan;Li, Juncheng;Wang, Ting. And the article was included in Chemical Communications (Cambridge, United Kingdom) in 2021.Computed Properties of C12H20O6 This article mentions the following:

The development of visible-light-induced photoacid catalyzed glycosylation is reported. The eosin Y and PhSSPh catalyst system is applied to realize glycosylation with different glycosyl donors upon light irradiation The reaction shows a broad substrate scope, including both glycosyl donors and acceptors, and highlights the mild nature of the reaction conditions. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Computed Properties of C12H20O6).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Computed Properties of C12H20O6

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem