Arendt, Cassandra S. et al. published their research in Journal of Biological Chemistry in 2010 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Name: (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

Role of Transmembrane Domain 4 in Ligand Permeation by Crithidia fasciculata Equilibrative Nucleoside Transporter 2 (CfNT2) was written by Arendt, Cassandra S.; Ullman, Buddy. And the article was included in Journal of Biological Chemistry on February 26,2010.Name: (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

Equilibrative nucleoside transporters play essential roles in nutrient uptake, cardiovascular and renal function, and purine analog drug chemotherapies. Limited structural information is available for this family of transporters; however, residues in transmembrane domains 1, 2, 4, and 5 appear to be important for ligand and inhibitor binding. In order to identify regions of the transporter that are important for ligand specificity, a genetic selection for mutants of the inosine-guanosine-specific Crithidia fasciculata nucleoside transporter 2 (CfNT2) that had gained the ability to transport adenosine was carried out in the yeast Saccharomyces cerevisiae. Nearly all pos. clones from the genetic selection carried mutations at lysine 155 in transmembrane domain 4, highlighting lysine 155 as a pivotal residue governing the ligand specificity of CfNT2. Mutation of lysine 155 to asparagine conferred affinity for adenosine on the mutant transporter at the expense of inosine and guanosine affinity due to weakened contacts to the purine ring of the ligand. Following systematic cysteine-scanning mutagenesis, thiol-specific modification of several positions within transmembrane domain 4 was found to interfere with inosine transport capability, indicating that this helix lines the water-filled ligand translocation channel. Addnl., the pattern of modification of transmembrane domain 4 suggested that it may deviate from helicity in the vicinity of residue 155. Position 155 was also protected from modification in the presence of ligand, suggesting that lysine 155 is in or near the ligand binding site. Transmembrane domain 4 and particularly lysine 155 appear to play key roles in ligand discrimination and translocation by CfNT2. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Name: (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Name: (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Kowiel, Marcin et al. published their research in Nucleic Acids Research in 2020 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Related Products of 550-33-4

Conformation-dependent restraints for polynucleotides: the sugar moiety was written by Kowiel, Marcin; Brzezinski, Dariusz; Gilski, Miroslaw; Jaskolski, Mariusz. And the article was included in Nucleic Acids Research on January 24,2020.Related Products of 550-33-4 The following contents are mentioned in the article:

Stereochem. restraints are commonly used to aid the refinement of macromol. structures obtained by exptl. methods at lower resolution The standard restraint library for nucleic acids has not been updated for over two decades and needs revision. In this paper, geometrical restraints for nucleic acids sugars are derived using information from high-resolution crystal structures in the Cambridge Structural Database. In contrast to the existing restraints, this work shows that different parts of the sugar moiety form groups of covalent geometry dependent on various chem. and conformational factors, such as the type of ribose or the attached nucleobase, and ring puckering or rotamers of the glycosidic (χ) or side-chain (γ) torsion angles. Moreover, the geometry of the glycosidic link and the endocyclic ribose bond angles are functionally dependent on χ and sugar pucker amplitude (τm), resp. The proposed restraints have been pos. validated against data from the Nucleic Acid Database, compared with an ultrahigh-resolution Z-DNA structure in the Protein Data Bank, and tested by rerefining hundreds of crystal structures in the Protein Data Bank. The conformation-dependent sugar restraints presented in this work are publicly available in REFMAC, PHENIX and SHELXL format through a dedicated RestraintLib web server with an API function. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Related Products of 550-33-4).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Related Products of 550-33-4

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Gillerman, Irina et al. published their research in Journal of Medicinal Chemistry in 2011 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application In Synthesis of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

Investigations into the Origin of the Molecular Recognition of Several Adenosine Deaminase Inhibitors was written by Gillerman, Irina; Fischer, Bilha. And the article was included in Journal of Medicinal Chemistry on January 13,2011.Application In Synthesis of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

Inhibitors of adenosine deaminase (ADA, EC 3.5.4.4) are potential therapeutic agents for the treatment of various health disorders. Several highly potent inhibitors were previously identified, yet they exhibit unacceptable toxicities. We performed a SAR study involving a series of C2 or C8 substituted purine-riboside analogs with a view to discover less potent inhibitors with a lesser toxicity. We found that any substitution at C8 position of nebularine resulted in total loss of activity toward calf intestinal ADA. However, several 2-substituted-adenosine, 8-aza-adenosine, and nebularine analogs exhibited inhibitory activity. Specifically, 2-Cl-purine riboside, 8-aza-2-thiohexyl adenosine, 2-thiohexyl adenosine, and 2-MeS-purine riboside were found to be competitive inhibitors of ADA with Ki values of 25, 22, 6, and 3 μM, resp. We concluded that electronic parameters are not major recognition determinants of ADA but rather steric parameters. A C2 substituent which fits ADA hydrophobic pocket and improves H-bonding with the enzyme makes a good inhibitor. In addition, a gg rotamer about C4′-C5′ bond is apparently an important recognition determinant. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Application In Synthesis of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application In Synthesis of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Swain, Monalisa et al. published their research in Nucleic Acids Research in 2021 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Synthetic Route of C10H12N4O4  

Dynamic bulge nucleotides in the KSHV PAN ENE triple helix provide a unique binding platform for small molecule ligands was written by Swain, Monalisa; Ageeli, Abeer A.; Kasprzak, Wojciech K.; Li, Mi; Miller, Jennifer T.; Solinska, Joanna Sztuba; Schneekloth, John S.; Koirala, Deepak; Piccirili, Joseph; Fraboni, Americo J.; Murelli, Ryan P.; Wlodawer, Alexander; Shapiro, Bruce A.; Baird, Nathan; Le Grice, Stuart F. J.. And the article was included in Nucleic Acids Research in 2021.Synthetic Route of C10H12N4O4   The following contents are mentioned in the article:

Cellular and virus-coded long non-coding (lnc) RNAs support multiple roles related to biol. and pathol. processes. Several lncRNAs sequester their 3 termini to evade cellular degradation machinery, thereby supporting disease progression. An intramol. triplex involving the lncRNA 3 terminus, the element for nuclear expression (ENE), stabilizes RNA transcripts and promotes persistent function. Therefore, such ENE triplexes, as presented here in Kaposi′s sarcoma-associated herpesvirus (KSHV) polyadenylated nuclear (PAN) lncRNA, represent targets for therapeutic development. Towards identifying novel ligands targeting the PAN ENE triplex, we screened a library of immobilized small mols. and identified several triplex-binding chemotypes, the tightest of which exhibits micromolar binding affinity. Combined biophys., biochem., and computational strategies localized ligand binding to a platform created near a dinucleotide bulge at the base of the triplex. Crystal structures of apo (3.3 Å) and ligand-soaked (2.5 Å) ENE triplexes, which include a stabilizing basal duplex, indicate significant local structural rearrangements within this dinucleotide bulge. MD simulations and a modified nucleoside analog interference technique corroborate the role of the bulge and the base of the triplex in ligand binding. Together with recently discovered small mols. that reduce nuclear MALAT1 lncRNA levels by engaging its ENE triplex, our data supports the potential of targeting RNA triplexes with small mols. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Synthetic Route of C10H12N4O4  ).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Synthetic Route of C10H12N4O4  

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Hu, Ping et al. published their research in Food & Function in 2021 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Application In Synthesis of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

Metabolomic profiling reveals the effects of early-life lactoferrin intervention on protein synthesis, energy production and antioxidative capacity in the liver of suckling piglets was written by Hu, Ping; Zhao, Fangzhou; Wang, Jing; Zhu, Weiyun. And the article was included in Food & Function in 2021.Application In Synthesis of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

This study aimed to determine the effects of an early-life lactoferrin (LF) intervention on liver metabolism in suckling piglets. Sixty newborn piglets with an average initial body weight (BW) of 1.51 ± 0.05 kg were assigned to a control (CON) group and an LF group. At age 1 to 7 days, the piglets in the LF group were orally administered LF solution (0.5 g per kg BW daily), whereas the piglets in the CON group were orally administered the same dose of physiol. saline. Plasma, jejunum and liver samples were collected on days 8 and 21. The LF piglets showed a decreased plasma urea nitrogen level on day 8 and an increased plasma albumin level on day 21. Pathway anal. of the metabolomic profiles showed that the LF treatment affected amino acid metabolism in the liver. In addition, the LF treatment upregulated the gene expression levels of proteolytic enzymes and amino acid transporters (APA, APN, EAAC1, Pept1, CAT1, B0AT1 and ASCT2) in the jejunum, and it enhanced the phosphorylation levels of mTOR and p70S6K in the liver. The LF treatment also upregulated the expression of a β-oxidation-related gene (CPT1) and affected the tricarboxylic acid cycle in the liver on day 21. Furthermore, the LF piglets showed a decreased level of malondialdehyde and increased levels of GSH, GSH-Px and GCLC in the liver mitochondria. Overall, the early-life LF intervention affected the protein synthesis, energy production and antioxidative capacity in the liver of the neonatal piglets. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Application In Synthesis of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Application In Synthesis of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Gong, Liang et al. published their research in Virulence in 2020 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Electric Literature of C10H12N4O4  

New insights into the evolution of host specificity of three Penicillium species and the pathogenicity of P. Italicum involving the infection of Valencia orange (Citrus sinensis) was written by Gong, Liang; Liu, Yongfeng; Xiong, Yehui; Li, Taotao; Yin, Chunxiao; Zhao, Juanni; Yu, Jialin; Yin, Qi; Gupta, Vijai Kumar; Jiang, Yueming; Duan, Xuewu. And the article was included in Virulence in 2020.Electric Literature of C10H12N4O4   The following contents are mentioned in the article:

Blue and green molds, the common phenotypes of post-harvest diseases in fruits, are mainly caused by Penicillium fungal species, including P. italicum, P. digitatum, and P. expansum. We sequenced and assembled the genome of a P. italicum strain, which contains 31,034,623 bp with 361 scaffolds and 627 contigs. A dual-transcriptome anal. following the infection of Valencia orange (Citrus sinensis) by P. italicum resulted in the annotation of 9,307 P. italicum genes and 24,591 Valencia orange genes. The pathogenicity of P. italicum may be due to the activation of effectors, including 51 small secreted cysteine-rich proteins, 110 carbohydrate-active enzymes, and 12 G protein-coupled receptors. Addnl., 211 metabolites related to the interactions between P. italicum and Valencia orange were identified by gas chromatog.-time of flight mass spectrog., three of which were further confirmed by ultra-high performance liquid chromatog. triple quadrupole mass spectrometry. Moreover, a correlation anal. between the metabolite contents and gene expression levels suggested that P. italicum induces carbohydrate metabolism in Valencia orange fruits as part of its infection strategy. This study provides useful information regarding the genomic determinants that drive the evolution of host specificity in Penicillium species and clarifies the host-plant specificity during the infection of Valencia orange by P. italicum. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Electric Literature of C10H12N4O4  ).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Electric Literature of C10H12N4O4  

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Kamran, Muhammad et al. published their research in Indo American Journal of Pharmaceutical Sciences in 2018 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Related Products of 550-33-4

Selective and non-selective activated and inhibitory agents effects on adenylyl cyclase in the kidney of the rats was written by Kamran, Muhammad; Butt, Awais; Nawaz, Shahzaib. And the article was included in Indo American Journal of Pharmaceutical Sciences in 2018.Related Products of 550-33-4 The following contents are mentioned in the article:

To have in depth knowledge about the effects of nonselective and selective inhibitory and activated agents on adenylyl cyclase in rat kidney. A variety of concentrations of pharmacol. agents were prepared They include nebularine, Ap3A, forskolin, Ap4A and caffeine. Furthermore, effects of these agents were noted in relation to rat kidney adenylyl activity. Tissue of rat kidney was used in the process of preparation of crude extract Activity of adenylyl cyclase in connection with crude extract was observed [2-H3] ATP was used as substrate which ultimately lead to the formation of cAMP. Pharmacol. agents with their prepared concentrations were tested. Prominent activator of adenylyl cyclase, forskolin, was selected as a compound Ap4A, caffeine, nebularine, and Ap3A were utilized for comparison purpose. Adenylyl cyclase activity was at peak at 100 M forskolin as per concluded results. Nebularine inhibited activity of enzyme when agent concentration enhanced up to 50 M where the inhibition started to stable. No considerable effect on the enzyme activity in kidney tissue was observed when caffeine with 10 – 300 M on the of adenylyl cyclase activity was used. No effect on adenylyl cyclase activity was noted when Ap3A over the concentration range of 10 – 300 M was used. However, an inhibition effect on the enzyme activity was noted when Ap4A with the concentration 100 M was used. Role of cyclic nucleotides in metabolism control and cell-signaling is undeniably significant. It stimulates inhibitors and activities of cyclase to make some likely physiol. impacts. Foreskin being initiator of adenylyl cyclase, Ap4A and nebularine are established to be latent inhibitors of cyclase, which signifies their importance in curing schizophrenia, mania, seizure, etc. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Related Products of 550-33-4).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Related Products of 550-33-4

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Rogne, Per et al. published their research in Proceedings of the National Academy of Sciences of the United States of America in 2018 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Recommanded Product: (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

Molecular mechanism of ATP versus GTP selectivity of adenylate kinase was written by Rogne, Per; Rosselin, Marie; Grundstroem, Christin; Hedberg, Christian; Sauer, Uwe H.; Wolf-Watz, Magnus. And the article was included in Proceedings of the National Academy of Sciences of the United States of America on March 20,2018.Recommanded Product: (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

Enzymic substrate selectivity is critical for the precise control of metabolic pathways. In cases where chem. related substrates are present inside cells, robust mechanisms of substrate selectivity are required. Here, we report the mechanism utilized for catalytic ATP vs. GTP selectivity during adenylate kinase (Adk)-mediated phosphorylation of AMP. Using NMR spectroscopy we found that while Adk adopts a catalytically competent and closed structural state in complex with ATP, the enzyme is arrested in a catalytically inhibited and open state in complex with GTP. X-ray crystallog. experiments revealed that the interaction interfaces supporting ATP and GTP recognition, in part, are mediated by coinciding residues. The mechanism provides an at. view on how the cellular GTP pool is protected from Adk turnover, which is important because GTP has many specialized cellular functions. In further support of this mechanism, a structure-function anal. enabled by synthesis of ATP analogs suggests that a hydrogen bond between the adenine moiety and the backbone of the enzyme is vital for ATP selectivity. The importance of the hydrogen bond for substrate selectivity is likely general given the conservation of its location and orientation across the family of eukaryotic protein kinases. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Recommanded Product: (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Recommanded Product: (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Li, Yan et al. published their research in Plant Physiology and Biochemistry (Issy-les-Moulineaux, France) in 2022 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Quality Control of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

Physiological defense and metabolic strategy of Pistia stratiotes in response to zinc-cadmium co-pollution was written by Li, Yan; Xin, Jianpan; Tian, Runan. And the article was included in Plant Physiology and Biochemistry (Issy-les-Moulineaux, France) on May 1,2022.Quality Control of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

Pistia stratiotes is a cadmium (Cd) hyperaccumulating plant with strong bioaccumulation and translocation capacity for Cd. A hydroponic experiment was used to evaluate the combined effect of Zinc (Zn) and Cd at different concentrations on leaf growth and metabolism of P. stratiotes. This study revealed the physiol. defense and metabolic strategy of responses to Zn-Cd co-pollution. With the Zn50Cd1, Zn50Cd10, Zn100Cd1, and Zn100Cd10 treatments for 9 d, the relative crown diameter, relative leave number, and ramet number of the plant had no significant difference with the control. Under the compound treatments containing Zn50Cd50 and Zn100Cd50, the activity of the glyoxalase system and amino acid metabolism in the leaves were inhibited. The leaf photosynthetic apparatus increased heat dissipation to reduce the damage to the photosystem II (PS II) reaction center caused by excess excitation energy under Zn-Cd stress. This safeguarded the balance between the absorption and utilization of light energy. Compared to the control, the Zn and Cd co-pollution for 9 d had no effect on the reduced glutathione (GSH) and oxidized glutathione (GSSG) contents. There was no effect on the dehydroascorbate reductase (DHAR) and glutathione reductase (GR) activities, but there was increased ascorbate peroxidase (APX) activity and oxidized ascorbic acid (DHA) content. These increased the antioxidant capacity of the ascorbate-glutathione (AsA-GSH) cycle. The treated plants also had increased levels of carnosol and substances related to lipid metabolism including 9, 10-Dihydroxystearate, Prostaglandin G2, Sphingosine, and 13-L-Hydroperoxylinoleic acid, maintaining the cell stability and resistance to the Zn-Cd stress. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Quality Control of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Quality Control of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Gu, Qun et al. published their research in Journal of Chromatography A in 2011 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

Evaluation of automated sample preparation, retention time locked gas chromatography-mass spectrometry and data analysis methods for the metabolomic study of Arabidopsis species was written by Gu, Qun; David, Frank; Lynen, Frederic; Rumpel, Klaus; Dugardeyn, Jasper; Van Der Straeten, Dominique; Xu, Guowang; Sandra, Pat. And the article was included in Journal of Chromatography A on May 27,2011.Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

In this paper, automated sample preparation, retention time locked gas chromatog.-mass spectrometry (GC-MS) and data anal. methods for the metabolomics study were evaluated. A miniaturized and automated derivatization method using sequential oximation and silylation was applied to a polar extract of 4 types (2 types × 2 ages) of Arabidopsis thaliana, a popular model organism often used in plant sciences and genetics. Automation of the derivatization process offers excellent repeatability, and the time between sample preparation and anal. was short and constant, reducing artifact formation. Retention time locked (RTL) gas chromatog.-mass spectrometry was used, resulting in reproducible retention times and GC-MS profiles. Two approaches were used for data anal. XCMS followed by principal component anal. (approach 1) and AMDIS deconvolution combined with a com. available program (Mass Profiler Professional) followed by principal component anal. (approach 2) were compared. Several features that were up- or down-regulated in the different types were detected. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4