Xia, Ran et al. published their research in Green Chemistry in 2014 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Reference of 550-33-4

Efficient synthesis of nebularine and vidarabine via dehydrazination of (hetero)aromatics catalyzed by CuSO4 in water was written by Xia, Ran; Xie, Ming-Sheng; Niu, Hong-Ying; Qu, Gui-Rong; Guo, Hai-Ming. And the article was included in Green Chemistry in 2014.Reference of 550-33-4 The following contents are mentioned in the article:

A simple dehydrazination reaction has been achieved in the presence of a catalytic amount of CuSO4 for the first time. With CuSO4 (2 mol%) as a catalyst and water as a solvent, the dehydrazination products were obtained in good yields (66-95%). Moreover, the drugs nebularine and vidarabine were afforded successfully, and vidarabine could be produced on a 0.923 kg scale, which shows good potential for industrial applications. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Reference of 550-33-4).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Reference of 550-33-4

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Xia, Ran et al. published their research in Phosphorus, Sulfur and Silicon and the Related Elements in 2017 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Formula: C10H12N4O4  

The synthesis of nebularine and its analogs via oxidative desulfuration in aqueous nitric acid was written by Xia, Ran; Sun, Li-Ping; Qu, Gui-Rong. And the article was included in Phosphorus, Sulfur and Silicon and the Related Elements in 2017.Formula: C10H12N4O4   The following contents are mentioned in the article:

The synthesis of nebularine and its analogs has been achieved via oxidative desulfuration in H2O for the first time. With 50% HNO3 as an oxidant and solvent, 18 products were obtained in good yields (70%-94%). The oxidative desulfuration system could tolerate different functional groups including fluoro, chloro, amino, alkyl, allyl, ribosyl, deoxyribosyl, and arabinofuranosyl groups. More importantly, the drug nebularine could be obtained successfully on a 20 g scale, which made this route more attractive for industrial applications. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Formula: C10H12N4O4  ).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Formula: C10H12N4O4  

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

D’Errico, Stefano et al. published their research in Tetrahedron in 2011 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Formula: C10H12N4O4  

Probing the reactivity of nebularine N1-oxide. A novel approach to C-6 C-substituted purine nucleosides was written by D’Errico, Stefano; Piccialli, Vincenzo; Oliviero, Giorgia; Borbone, Nicola; Amato, Jussara; D’Atri, Valentina; Piccialli, Gennaro. And the article was included in Tetrahedron in 2011.Formula: C10H12N4O4   The following contents are mentioned in the article:

A novel approach to the synthesis of purine nucleoside analogs, featuring the reaction of the C6-N1-O- aldonitrone moiety of 9-ribosyl-purine (nebularine) N1-oxide with some representative dipolarophiles, as well as Grignard reagents, is reported. Addition of Grignard reagents to the electrophilic C-6 carbon of the substrate allows a facile access to C-6 C-substituted purine nucleosides without using metal catalysts. 1,3-Dipolar cycloaddition processes lead to novel nucleoside analogs via opening, degradation or ring-enlargement of the pyrimidine ring of the base system of the first-formed isoxazoline or isoxazolidine cycloadduct. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Formula: C10H12N4O4  ).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Formula: C10H12N4O4  

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Sethi, Siddhant et al. published their research in Molecular BioSystems in 2017 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Product Details of 550-33-4

Effect of nucleobase change on cytosine deamination through DNA photo-cross-linking reaction via 3-cyanovinylcarbazole nucleoside was written by Sethi, Siddhant; Ooe, Minako; Sakamoto, Takashi; Fujimoto, Kenzo. And the article was included in Molecular BioSystems in 2017.Product Details of 550-33-4 The following contents are mentioned in the article:

Photo-chem. deamination of cytosine using 3-cyanovinylcarbazole nucleoside (CNVK) mediated photo-crosslinking is a technique for site-directed mutagenesis. Using this technique in vivo requires the elimination of a high-temperature incubation step; instead, incubation should be carried out under physiol. conditions. To improve the reactivity of CNVK mediated photo-cross-link induced deamination of cytosine under physiol. conditions, an evaluation of base pairing in cytosine was carried out with respect to its deamination. Guanine was replaced with 4 different counter bases (inosine, 2-aminopurine, 5-nitroindole, and nebularine), showing distinct hydrogen bonding patterns with target cytosine, which was incorporated at the -1 position with respect to CNVK in the CNVK-modified photo-responsive oligodeoxyribonucleotides to ascertain the role of hydrogen bonding in deamination under physiol. conditions. Among the counter bases, inosine showed the highest acceleration towards the photo-induced deamination reaction. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Product Details of 550-33-4).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Product Details of 550-33-4

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Hassan, Abdalla E. A. et al. published their research in European Journal of Medicinal Chemistry in 2012 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Product Details of 550-33-4

Synthesis and evaluation of the substrate activity of C-6 substituted purine ribosides with E. coli purine nucleoside phosphorylase: Palladium mediated cross-coupling of organo-zinc halides with 6-chloropurine nucleosides was written by Hassan, Abdalla E. A.; Abou-Elkhair, Reham A. I.; Riordan, James M.; Allan, Paula W.; Parker, William B.; Khare, Rashmi; Waud, William R.; Montgomery, John A.; Secrist, John A. III. And the article was included in European Journal of Medicinal Chemistry in 2012.Product Details of 550-33-4 The following contents are mentioned in the article:

A series of C-6 alkyl, cycloalkyl, and aryl-9-(β-D-ribofuranosyl)purines were synthesized and their substrate activities with Escherichia coli purine nucleoside phosphorylase (E. coli PNP) were evaluated. (Ph3P)4Pd-mediated cross-coupling reactions of 6-chloro-9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-purine (I) with primary alkyl (Me, Et, n-Pr, n-Bu, isoBu) zinc halides followed by treatment with NH3/MeOH gave the corresponding 6-alkyl-9-(β-D-ribofuranosyl)purine derivatives, e.g. II, 7-11, resp., in good yields. Reactions of I with cycloalkyl(Pr, Bu, pentyl)zinc halides and aryl (Ph, 2-thienyl)zinc halides gave under similar conditions the corresponding 6-cyclopropyl, cyclobutyl, cyclopentyl, Ph, and thienyl-9-(β-D-ribofuranosyl)purine derivatives in high yields. E. coli PNP showed a high tolerance to the steric and hydrophobic environment at the 6-position of the synthesized purine ribonucleosides. Evaluation of II against human tumor xenografts in mice did not demonstrate any selective antitumor activity. In addition, 6-methyl-9-(β-D-arabinofuranosyl)purine was prepared and evaluated for its antitumor activity. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Product Details of 550-33-4).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Product Details of 550-33-4

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Basu, Soumitra et al. published their research in Methods in Molecular Biology (New York, NY, United States) in 2012 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Related Products of 550-33-4

Analysis of catalytic RNA structure and function by nucleotide analog interference mapping was written by Basu, Soumitra; Morris, Mark J.; Pazsint, Catherine. And the article was included in Methods in Molecular Biology (New York, NY, United States) in 2012.Related Products of 550-33-4 The following contents are mentioned in the article:

Nucleotide analog interference mapping (NAIM) is a quick and efficient method to define concurrently, yet singly, the importance of specific functional groups at particular nucleotide residues to the structure and function of an RNA. NAIM can be utilized on virtually any RNA with an assayable function. The method hinges on the ability to successfully incorporate, within an RNA transcript, various 5′-O-(1-thio)nucleoside analogs randomly via in vitro transcription. This could be achieved by using wild-type or Y639F mutant T7 RNA polymerase, thereby creating a pool of analog doped RNAs. The pool when subjected to a selection step to sep. the active transcripts from the inactive ones leads to the identification of functional groups that are crucial for RNA activity. The technique can be used to study ribozyme structure and function via monitoring of cleavage or ligation reactions, define functional groups critical for RNA folding, RNA-RNA interactions, and RNA interactions with proteins, metals, or other small mols. All major classes of catalytic RNAs have been probed by NAIM. This is a generalized approach that should provide the scientific community with the tools to better understand RNA structure-activity relationships. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Related Products of 550-33-4).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Related Products of 550-33-4

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Riml, Christian et al. published their research in Nucleic Acids Research in 2015 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent was written by Riml, Christian; Glasner, Heidelinde; Rodgers, M. T.; Micura, Ronald; Breuker, Kathrin. And the article was included in Nucleic Acids Research in 2015.Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

RNA modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochem. methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in ‘top-down’ strategies are currently being developed. For this purpose, it is essential to understand the dissociation mechanisms of unmodified and posttranscriptionally or synthetically modified RNA. Here, we have studied the effect of select nucleobase, ribose and backbone modifications on phosphodiester bond cleavage in collisionally activated dissociation (CAD) of pos. and neg. charged RNA. We found that CAD of RNA is a stepwise reaction that is facilitated by, but does not require, the presence of pos. charge. Preferred backbone cleavage next to adenosine and guanosine in CAD of (M + nH)n+ and (M-nH)n- ions, resp., is based on hydrogen bonding between nucleobase and phosphodiester moieties. Moreover, CAD of RNA involves an intermediate that is sufficiently stable to survive extension of the RNA structure and intramol. proton redistribution according to simple Coulombic repulsion prior to backbone cleavage into c and y ions from phosphodiester bond cleavage. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Campagnaro, Gustavo D. et al. published their research in International Journal of Molecular Sciences in 2022 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

A Toxoplasma gondii Oxopurine Transporter Binds Nucleobases and Nucleosides Using Different Binding Modes was written by Campagnaro, Gustavo D.; Elati, Hamza A. A.; Balaska, Sofia; Martin Abril, Maria Esther; Natto, Manal J.; Hulpia, Fabian; Lee, Kelly; Sheiner, Lilach; Van Calenbergh, Serge; de Koning, Harry P.. And the article was included in International Journal of Molecular Sciences in 2022.Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

Toxoplasma gondii is unable to synthesize purines de novo, instead salvages them from its environment, inside the host cell, for which they need high affinity carriers. Here, we report the expression of a T. gondii Equilibrative Nucleoside Transporter, Tg244440, in a Trypanosoma brucei strain from which nucleobase transporters have been deleted. Tg244440 transported hypoxanthine and guanine with similar affinity (Km ∼1 μM), while inosine and guanosine displayed Ki values of 4.05 and 3.30 μM, resp. Low affinity was observed for adenosine, adenine, and pyrimidines, classifying Tg244440 as a high affinity oxopurine transporter. Purine analogs were used to probe the substrate-transporter binding interactions, culminating in quant. models showing different binding modes for oxopurine bases, oxopurine nucleosides, and adenosine. Hypoxanthine and guanine interacted through protonated N1 and N9, and through unprotonated N3 and N7 of the purine ring, whereas inosine and guanosine mostly employed the ribose hydroxy groups for binding, in addition to N1H of the nucleobase. Conversely, the ribose moiety of adenosine barely made any contribution to binding. Tg244440 is the first gene identified to encode a high affinity oxopurine transporter in T. gondii and, to the best of our knowledge, the first purine transporter to employ different binding modes for nucleosides and nucleobases. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Lougiakis, Nikolaos et al. published their research in Chemical & Pharmaceutical Bulletin in 2015 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.HPLC of Formula: 550-33-4

Synthesis of new nebularine analogues and their inhibitory activity against adenosine deaminase was written by Lougiakis, Nikolaos; Marakos, Panagiotis; Pouli, Nicole; Fragopoulou, Elisabeth; Tenta, Roxane. And the article was included in Chemical & Pharmaceutical Bulletin on February 28,2015.HPLC of Formula: 550-33-4 The following contents are mentioned in the article:

A number of new 2,6-disubstituted-1-deazanebularine analogs as well as two structurally related pyrazole-fused tricyclic nucleosides were prepared Their synthesis was carried out by the conversion of 6-amino-2-picoline to a suitable 1-deazapurine, followed by a Vorbruggen type glycosylation and subsequent elaboration of the condensed pyrazole ring. The synthesized nebularine analogs proved to be weak adenosine deaminase inhibitors. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4HPLC of Formula: 550-33-4).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.HPLC of Formula: 550-33-4

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Vylicilova, Hana et al. published their research in Phytochemistry (Elsevier) in 2016 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Category: tetrahydrofurans

C2-substituted aromatic cytokinin sugar conjugates delay the onset of senescence by maintaining the activity of the photosynthetic apparatus was written by Vylicilova, Hana; Husickova, Alexandra; Spichal, Lukas; Srovnal, Josef; Dolezal, Karel; Plihal, Ondrej; Plihalova, Lucie. And the article was included in Phytochemistry (Elsevier) on February 29,2016.Category: tetrahydrofurans The following contents are mentioned in the article:

Cytokinins are plant hormones with biol. functions ranging from coordination of plant growth and development to the regulation of senescence. A series of 2-chloro-N6-(halogenobenzylamino)purine ribosides was prepared and tested for cytokinin activity in detached wheat leaf senescence, tobacco callus and Amaranthus bioassays. The synthetic compounds showed significant activity, especially in delaying senescence in detached wheat leaves. They were also tested in bacterial receptor bioassays using both monocot and dicot members of the cytokinin receptor family. Most of the derivatives did not trigger cytokinin signaling via the AHK3 and AHK4 receptors from Arabidopsis thaliana in the bacterial assay, but some of them specifically activated the ZmHK1 receptor from Zea mays and were also more active than the aromatic cytokinin BAP in an ARR5::GUS cytokinin bioassay using transgenic Arabidopsis plants. Whole transcript expression anal. was performed using an Arabidopsis model to gather information about the reprogramming of gene transcription when senescent leaves were treated with selected C2-substituted aromatic cytokinin ribosides. Genome-wide expression profiling revealed that the synthetic halogenated derivatives induced the expression of genes related to cytokinin signaling and metabolism They also prompted both up- and down-regulation of a unique combination of genes coding for components of the photosystem II (PSII) reaction center, light-harvesting complex II (LHCII), and the oxygen-evolving complex, as well as several stress factors responsible for regulating photosynthesis and chlorophyll degradation Chlorophyll content and fluorescence analyses demonstrated that treatment with the halogenated derivatives increased the efficiency of PSII photochem. and the abundance of LHCII relative to DMSO- and BAP-treated controls. These findings demonstrate that it is possible to manipulate and fine-tune leaf longevity using synthetic aromatic cytokinin analogs. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Category: tetrahydrofurans).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Category: tetrahydrofurans

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4