Some tips on 5061-21-2

As the paragraph descriping shows that 5061-21-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5061-21-2,2-Bromo-4-butanolide,as a common compound, the synthetic route is as follows.

5061-21-2, To a solution of 8.5 ml toluene, 3.03 g (25 mmol) of 2,6-dimethylphenylamine and 4.12 (25 mmol) of 3-bromo-dihydrofuran-2(3H)-one, heated to 80 C, a solution of 1.73 g (12.5 mmol) of K2CO3 in 5 ml of water was added dropwise over 5 h. After cooling, the mixture was washed with 5% solution of KHCO3 (10 ml) and water (3 * 25 ml). The organic layer was dried over Na2SO4, filtered off and the solvent removed in vacuo. The oily residue was dissolved in Et2O which crystallized slowly after a few days at 5 C; yield 3.2 g (62 %); mp 83-84 C; TLC: Rf (S1) = 0.79, Rf (S2) = 0.94; 1H NMR (CDCl3, delta ppm) 7.02 (d, J = 7.4 Hz, 2H, 3,5-Ph), 6.93 (m, 1H, 4-Ph), 4.46-4.23 (m, 2H, CH2-gamma), 4.01 (m, 1H, CH-alpha), 2.68 (m, 2H, CH2-beta), 2.40 (m, 6H, 2CH3, CH2-beta). ESI-MS (m/z) 206.0 [M+H]+. Anal. calcd for C12H15NO2: C, 70.22; H, 7.37; N, 6.82. Found: C, 69.69; H, 7.71; N, 6.84. According to 48 mp 85-86 C.

As the paragraph descriping shows that 5061-21-2 is playing an increasingly important role.

Reference£º
Article; Wieckowski, Krzysztof; Bytnar, Justyna; Bajda, Marek; Malawska, Barbara; Salat, Kinga; Filipek, Barbara; Stables, James P.; Bioorganic and medicinal chemistry; vol. 20; 21; (2012); p. 6533 – 6544,12;; ; Article; Wi?ckowski, Krzysztof; Sa?at, Kinga; Bytnar, Justyna; Bajda, Marek; Filipek, Barbara; Stables, James P.; Malawska, Barbara; Bioorganic and Medicinal Chemistry; vol. 20; 21; (2012); p. 6533 – 6544;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Brief introduction of 5061-21-2

5061-21-2 2-Bromo-4-butanolide 95463, aTetrahydrofurans compound, is more and more widely used in various fields.

5061-21-2, 2-Bromo-4-butanolide is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5061-21-2, (Step 1) To a solution of 2-amino-5-nitrophenol (2.00 g, 13 mmol) in DMF (20 mL) were added 3-bromo-dihydrofuran-2-one and potassium carbonate (2.1 g, 15.57 mmol), and the mixture was stirred at 80C for 4 hr under nitrogen atmosphere. The reaction mixture was allowed to be cooled to room temperature, and filtered through Celite, and the filtrate was concentrated under reduced pressure. The obtained residue was dissolved in ethyl acetate, and the solution was washed with water and saturated brine, and dried over sodium sulfate, and the solvent was evaporated under reduced pressure. The obtained yellow solid was washed with pentane to give 2-(2-hydroxyethyl)-7-nitro-4H-benzo[1,4]oxazin-3-one (2.5 g, 80.9%) as a yellow solid. MS (API) :239 (M+H)

5061-21-2 2-Bromo-4-butanolide 95463, aTetrahydrofurans compound, is more and more widely used in various fields.

Reference£º
Patent; Takeda Pharmaceutical Company Limited; YAMAMOTO, Satoshi; SHIRAI, Junya; FUKASE, Yoshiyuki; SATO, Ayumu; KOUNO, Mitsunori; TOMATA, Yoshihide; OCHIDA, Atsuko; YONEMORI, Kazuko; ODA, Tsuneo; IMADA, Takashi; YUKAWA, Tomoya; (238 pag.)EP2975031; (2016); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Brief introduction of 5061-21-2

5061-21-2 2-Bromo-4-butanolide 95463, aTetrahydrofurans compound, is more and more widely used in various fields.

5061-21-2, 2-Bromo-4-butanolide is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5061-21-2, General procedure: To a stirred mixture of thiols 12a-12k (100 mmol) and K2CO3(27.64 g, 200 mmol) in DMF (120 mL) at room temperaturewas added alpha-bromobutyrolactone (10, 14.85 g, 90 mmol), andthe resulting mixture was stirred at room temperature until thecompletion of reaction as indicated by TLC analysis (typicallywithin 12 h).The reaction mixture was poured into ice-water (400 mL),and the mixture thus obtained was extracted with CH2Cl2 (3 ¡Á100 mL). The combined extracts were washed successively with10% aqueous Na2CO3 (2 ¡Á 100 mL) and 5% brine (3 ¡Á 100 mL),dried over anhydrous Na2SO4 and evaporated on a rotary evaporator to aord a residue, which was purifed by columnchromatography to yield 13a-13k after trituration withEtOAc/n-hexane if the product was a solid.

5061-21-2 2-Bromo-4-butanolide 95463, aTetrahydrofurans compound, is more and more widely used in various fields.

Reference£º
Article; Zhang, Xiansheng; Wu, Jingwei; Liu, Yuqiang; Xie, Yafei; Liu, Changying; Wang, Jianwu; Zhao, Guilong; Phosphorus, Sulfur and Silicon and the Related Elements; vol. 192; 7; (2017); p. 799 – 811;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Some tips on 5061-21-2

As the paragraph descriping shows that 5061-21-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5061-21-2,2-Bromo-4-butanolide,as a common compound, the synthetic route is as follows.,5061-21-2

General procedure: To a stirred mixture of thiols 12a-12k (100 mmol) and K2CO3(27.64 g, 200 mmol) in DMF (120 mL) at room temperaturewas added alpha-bromobutyrolactone (10, 14.85 g, 90 mmol), andthe resulting mixture was stirred at room temperature until thecompletion of reaction as indicated by TLC analysis (typicallywithin 12 h).The reaction mixture was poured into ice-water (400 mL),and the mixture thus obtained was extracted with CH2Cl2 (3 ¡Á100 mL). The combined extracts were washed successively with10% aqueous Na2CO3 (2 ¡Á 100 mL) and 5% brine (3 ¡Á 100 mL),dried over anhydrous Na2SO4 and evaporated on a rotary evaporator to aord a residue, which was purifed by columnchromatography to yield 13a-13k after trituration withEtOAc/n-hexane if the product was a solid.

As the paragraph descriping shows that 5061-21-2 is playing an increasingly important role.

Reference£º
Article; Zhang, Xiansheng; Wu, Jingwei; Liu, Yuqiang; Xie, Yafei; Liu, Changying; Wang, Jianwu; Zhao, Guilong; Phosphorus, Sulfur and Silicon and the Related Elements; vol. 192; 7; (2017); p. 799 – 811;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

New learning discoveries about 5061-21-2

The synthetic route of 5061-21-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5061-21-2,2-Bromo-4-butanolide,as a common compound, the synthetic route is as follows.

5061-21-2, General procedure: Anhydrous K2CO3 (5 equiv) was added to the solution of relevantamine (1 equiv) and tetrabutylammonium bromide (TBAB)(0.01 equiv) in the acetonitrile and the mixture was stirred at at0 C for 1.5 h. Then a solution of 3-bromodihydrofuran-2(3H)-one(8) or 3-bromo-5-methyldihydrofuran-2(3H)-one (9) (1 equiv)was added dropwise and stirring was continued for 12-48 h atroom temperature. After the reaction was completed, the precipitatewas filtered off and the filtrate was concentrated under vacuum.Obtained crude products were purified by columnchromatography. Reagents and conditions: 21.25mmol 1 (5.30g), 85mmol K2CO3 (11.75g), 0.65mmol TBAB (0.21g), 21.25mmol 8 (3.50g), 50ml MeCN, 24h; purification by column chromatography (S7); Yield 98%; yellow solid; mp 164.1-165.3C; Rf: 0.89 (S3); 1H NMR (300MHz, chloroform-d) delta ppm 2.30-2.39 (m, 2H(NCHCH2CH2)) 2.41-2.52 (m, 4H(piperidine)) 2.60-2.69 (m, 2H(piperidine)) 2.89 (dt, J=10.64, 5.45Hz, 2H(piperidine)) 3.66 (t, J=9.62Hz, 1H(NCH)) 4.16-4.25 (m, 1H(CH2CH2O)) 4.33-4.40 (m, 1H(CH2CH2O)) 7.09-7.31 (m, 10H(Ar)), ESI-MS (m/z) 334.1 [M+H]+.

The synthetic route of 5061-21-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Kowalczyk, Paula; Sa?at, Kinga; Hoefner, Georg C.; Guzior, Natalia; Filipek, Barbara; Wanner, Klaus T.; Kulig, Katarzyna; Bioorganic and Medicinal Chemistry; vol. 21; 17; (2013); p. 5154 – 5167;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Analyzing the synthesis route of 5061-21-2

5061-21-2 2-Bromo-4-butanolide 95463, aTetrahydrofurans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5061-21-2,2-Bromo-4-butanolide,as a common compound, the synthetic route is as follows.

5061-21-2, Example I: Synthesis of 3- (4-nitrophenvnsulfanyl1dihvdrofuran-2(3H)-oneTo a solution of p-nitro thiophenol (10.0 g, 0.0645 mol) in dichloromethane (75 mL) under argon atmosphere at about 0C, was added triethyl amine (19.4 g, 0.1935 mol) and then added a solution of bromolactone (11.1 g, 0.067 mol) in dichloromethane (75 mL) drop wise. The reaction mixture was stirred for about 30 minutes. Subsequently, the crude compound was obtained by adding water to the reaction mixture and extracting in dichloromethane. The organic layer was dried with sodium sulphate and concentrated, purified by silica gel column, using 30% ethyl acetate/hexane as eluent to obtain the title compound.Yield: 11 gSynthetic procedure for Scheme I:

5061-21-2 2-Bromo-4-butanolide 95463, aTetrahydrofurans compound, is more and more widely used in various fields.

Reference£º
Patent; RANBAXY LABORATORIES LIMITED; KHERA, Manoj Kumar; SONI, Ajay; SATTIGERI, Jitendra; SATTIGERI, Viswajanani; DAS, Biswajit; CLIFFE, Ian A.; BHATNAGAR, Pradip Kumar; RAUF, Abdul Rehman Abdul; MUSIB, Arpita; SAHA, Subham; YADAV, Neeraj Kumar; AHAMMED, Sabir; REDDY, Ranadheer R.; RAY, Abhijit; SRIVASTAVA, Punit; DASTIDAR, Sunanda Ghosh; WO2012/38942; (2012); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Downstream synthetic route of 5061-21-2

The synthetic route of 5061-21-2 has been constantly updated, and we look forward to future research findings.

5061-21-2, 2-Bromo-4-butanolide is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,5061-21-2

General procedure: Anhydrous K2CO3 (1 equiv.) was added to the solution of relevant amine (1 equiv.) in 20 mL of solvent (acetonitrile, DCM or Me2CO) and the mixture was stirred at room temperature for 0.5 h. Then a solution of 3-bromodihydrofuran-2(3H)-one (1 equiv.) in 5 mL of appropriate solvent was added dropwise and stirring was continued for 3-20 h. In the synthesis of compounds 11 and 12 tetrabutylammonium bromide (TBAB) (0.1 equiv.) was added. After the reaction was completed, the precipitate was filtered off and the filtrate was concentrated under vacuum. Obtained crude products were recrystallized from suitable solvent (solid) or purified by column chromatography (oil). Lactone 11 was isolated as a hydrochloride salt and recrystallized from DCM. Synthesis of compound 13 was described elsewhere [24] B. Malawska and S. Gobaille, Pharmazie 50 (1995), pp. 390-393. View Record in Scopus | Cited By in Scopus (10)[24].

The synthetic route of 5061-21-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Kulig, Katarzyna; Wickowski, Krzysztof; Wickowska, Anna; Gajda, Justyna; Pochwat, Bart?omiej; Hoefner, Georg C.; Wanner, Klaus T.; Malawska, Barbara; European Journal of Medicinal Chemistry; vol. 46; 1; (2011); p. 183 – 190;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Brief introduction of 5061-21-2

5061-21-2 2-Bromo-4-butanolide 95463, aTetrahydrofurans compound, is more and more widely used in various fields.

5061-21-2, 2-Bromo-4-butanolide is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5061-21-2, [Example 1]; Production of 2-mercapto-4-butyrolactone; 49 g (0.6 mol) of 70% sodium hydrosulfide (manufactured by JUNSEI CHEMICAL Co., Ltd.) were dissolved in a mixture of 34 g of 1,2-dimethoxyethane (Guaranteed Reagent; manufactured by JUNSEI CHEMICAL CO., LTD.) and 34 g of purified water (which had been distilled and passed through an ion exchange filter) at room temperature. While the resultant solution was cooledwith ice (to 100C or less) and under normal pressure (about 0.10MPa), 18 g of hydrochloric acid (GUARANTEED REAGENT, 35%to 37%; manufactured by JUNSEI CHEMICAL Co., Ltd.) were addedwith stirring the solution to adjust the pH of the solution to8.9. While the solution was maintained at a temperature of 100C or less, 34 g (0.2 mol) of 2-bromo-4-butyrolactone (manufacturedby Tokyo Chemical Industry Co., Ltd.) were added dropwise intothe solution over approximately 20 minutes. The reaction solution after the completion of the dropwise addition was stirred for 2 minutes . The pH of the reaction solution was withinthe range of 7.5 to 8.9 from when the dropwise addition of 2-bromo-4-butyrolactone was initiated to the stirring after thedropwise addition was completed. [0077]Thereafter, while the solution was cooled at 100C or less, 24 g of hydrochloric acid were added to the solution overapproximately 5 minutes to adjust the pH of the solution to 4.0. An inorganic salt precipitated in the solution was removed by suction filtration, and 20 g of ethyl acetate (GUARANTEED REAGENT; manufactured by JUNSEI CHEMICAL Co., Ltd.) were added to the resultant filtrate to extract the organic phase. The resultant aqueous phase was reextracted with 34 g of ethyl acetate. These extracted organic phases were combined. The organic phase was concentrated and purified by distillationunder a reduced pressure to give 19 g of2-mercapto-4-butyrolactone (having a boiling point of 94C/0.3 kPa; with a yield of 78%) .; [Examples 33 to 36]; In substantially the same manner as in Example 1 except that the temperature of the reaction solution during the reaction was changed as described in Table 4, the reaction was performed to synthesize 2-mercapto-4-butyrolactone. The results are shown in Table 4. The SH reaction yields in Table4 were calculated from the HPLC analysis results of samples which had been picked up from the reaction solution when the pH of the reaction solution was adjusted to 4.0.

5061-21-2 2-Bromo-4-butanolide 95463, aTetrahydrofurans compound, is more and more widely used in various fields.

Reference£º
Patent; SHOWA DENKO K.K.; WO2007/139215; (2007); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Brief introduction of 5061-21-2

5061-21-2 2-Bromo-4-butanolide 95463, aTetrahydrofurans compound, is more and more widely used in various.

5061-21-2, 2-Bromo-4-butanolide is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5061-21-2, alpha-Bromo-gamma-butyrolactone (1) (925 mul, 10 mmol, 1 equiv) was dissolved in acetone (17 ml) and a solution of NaN3 (3.25 g in 7 ml H2O, 50 mmol, 5 equiv) was added. The resulting solution was stirred overnight. Acetone was removed by evaporation under reduced pressure. The resulting aqueous mixture was extracted with CH2Cl2 (2 ¡Á 50 mL) and the organic layers were combined, dried over Na2SO4, filtered, and evaporated under reduced pressure. The resulting oil was found to be pure by NMR analysis (and was used without further purification). 1H NMR (300 MHz, CDCl3): delta 4.42 (dt, 1H, J = 3.6 Hz and 8.9 Hz, H-3), 4.23-4.31 (m, 2H, H-3 and H-1), 2.50-2.61 (m, 1H, H-2), 2.10-2.24 (m, 1H, H-2); 13C NMR (75 MHz, CDCl3): delta 173.6, 66.0, 56.8, 29.1

5061-21-2 2-Bromo-4-butanolide 95463, aTetrahydrofurans compound, is more and more widely used in various.

Reference£º
Article; Brackman, Gilles; Risseeuw, Martijn; Celen, Shari; Cos, Paul; Maes, Louis; Nelis, Hans J.; Van Calenbergh, Serge; Coenye, Tom; Bioorganic and Medicinal Chemistry; vol. 20; 15; (2012); p. 4737 – 4743;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Analyzing the synthesis route of 5061-21-2

5061-21-2 2-Bromo-4-butanolide 95463, aTetrahydrofurans compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5061-21-2,2-Bromo-4-butanolide,as a common compound, the synthetic route is as follows.

General procedure: A mixture of the appropriate amine (1 equiv) or its hydrochloride salt and anhydrous K2CO3 (1-1.2 equiv) in dry solvent (MeCN, DCM or toluene) was stirred at room temperature for 30 min. A solution of 3-bromo-dihydrofuran-2(3H)-one (1 equiv) in dry solvent (MeCN, DCM) was then added dropwise over 15 min and stirring continued for 5-48 h at ambient temperature. The mixture was then filtered and the filtrate was evaporated to obtain a crude oily residue which was purified by recrystallization from 2-propanol (i-PrOH) or EtOAc., 5061-21-2

5061-21-2 2-Bromo-4-butanolide 95463, aTetrahydrofurans compound, is more and more widely used in various.

Reference£º
Article; Wieckowski, Krzysztof; Bytnar, Justyna; Bajda, Marek; Malawska, Barbara; Salat, Kinga; Filipek, Barbara; Stables, James P.; Bioorganic and medicinal chemistry; vol. 20; 21; (2012); p. 6533 – 6544,12;; ; Article; Wi?ckowski, Krzysztof; Sa?at, Kinga; Bytnar, Justyna; Bajda, Marek; Filipek, Barbara; Stables, James P.; Malawska, Barbara; Bioorganic and Medicinal Chemistry; vol. 20; 21; (2012); p. 6533 – 6544;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem