Hao, Qingxiu et al. published their research in Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy in 2020 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Related Products of 470-69-9

Prediction the contents of fructose, glucose, sucrose, fructooligosaccharides and iridoid glycosides in Morinda officinalis radix using near-infrared spectroscopy was written by Hao, Qingxiu;Zhou, Jie;Zhou, Li;Kang, Liping;Nan, Tiegui;Yu, Yi;Guo, Lanping. And the article was included in Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy in 2020.Related Products of 470-69-9 This article mentions the following:

Morindae officinalis radix (MOR) is a famous Chinese herbal medicine which has long history of use in medicine and food. MOR and MOR with steaming process (PMOR) are the most commonly used forms in clin. and health care. In order to establish a fast and mostly nondestructive quality control method for MOR, 183 beaches of MOR samples and 20 beaches of PMOR samples were collected com. from major producing areas in Guangdong, Fujian and Guangxi Provinces of China. To predict main components of MOR, a calibration model was established based on near-IR spectroscopy with partial least square regression. The model was optimized by compared the parameters of root mean square error of prediction (RMSEP), root mean square error of cross validation (RMSECV), coefficient of correlation (R2) and ratio of performance to deviation (RPD). Comparative studies were performed to evaluate the performance of models by different spectra preprocessing methods and different data set. The results showed that the model performance was improved with standard normal variate spectra preprocessing methods and when the data set contained both MOR and PMOR samples. A few PMOR samples were added to MOR samples data set the model predictive performance could be improved. The contents of 14 components were predicted in MOR with lower RMSEP and RMSECV, and higher R2 and RPD, including fructose (12.8 mg/g, 16.3 mg/g, 0.9873, 10.10), glucose (7.28 mg/g, 8.73 mg/g, 0.9611, 6.21) sucrose (9.24 mg/g, 9.10 mg/g, 0.8419, 1.75), GF2(9.42 mg/g, 11.3 mg/g, 0.8526, 2.03), GF3(7.98 mg/g, 9.20 mg/g, 0.8756, 2.74), GF4(6.81 mg/g, 8.93 mg/g, 0.8663, 3.06), GF5(8.13 mg/g, 8.85 mg/g, 0.9001, 3.06), GF6(6.40 mg/g, 6.95 mg/g, 0.9145, 3.27), GF7(5.53 mg/g, 6.15 mg/g, 0.9195, 3.57), GF8(5.40 mg/g, 6.02 mg/g, 0.9179, 3.31), GF9(3.00 mg/g,4.35 mg/g,0.9446, 5.03),GF10(4.08 mg/g, 5.34 mg/g, 0.8983, 3.62), GF11(8.97 mg/g, 7.70 mg/g, 0.8683, 2.01) and iridoid glycosides (4.12 mg/g, 5.51 mg/g, 0.8712, 2.43). The model established in this paper could predict 14 components of MOR. The results would provide a reference method for the quality control of Chinese medical materials and their process products. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Related Products of 470-69-9).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Related Products of 470-69-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Nunez-Lopez, Gema et al. published their research in Carbohydrate Polymers in 2020 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.SDS of cas: 470-69-9

One-pot bi-enzymatic cascade synthesis of puerarin polyfructosides was written by Nunez-Lopez, Gema;Morel, Sandrine;Hernandez, Lazaro;Musacchio, Alexis;Amaya-Delgado, Lorena;Gschaedler, Anne;Remaud-Simeon, Magali;Arrizon, Javier. And the article was included in Carbohydrate Polymers in 2020.SDS of cas: 470-69-9 This article mentions the following:

Enzymic glycosylation is an efficient way to increase the water solubility and the bioavailability of flavonoids. Levansucrases from Bacillus subtilis (Bs_SacB), Gluconacetobacter diazotrophicus (Gd_LsdA), Leuconostoc mesenteroides (Lm_LevS) and Zymomonas mobilis (Zm_LevU) were screened for puerarin (daidzein-8-C-glucoside) fructosylation. Gd_LsdA transferred the fructosyl unit of sucrose onto the glucosyl unit of the acceptor forming β-D-fructofuranosyl-(2→6)-puerarin (P1a), while Bs_SacB, Lm_LevS and Zm_LevU synthesized puerarin-4′-O-β-D-fructofuranoside (P1b) and traces of P1a. The Gd_LsdA product P1a was purified and assayed as precursor for the synthesis of puerarin polyfructosides (PPFs). Bs_SacB elongated P1a more competently forming a linear series of water-soluble PPFs reaching at least 21 fructosyl units, as characterized by HPLC-UV-MS, HPSEC and MALDI-TOF-MS. Simultaneous or sequential Gd_LsdA/Bs_SacB reactions yielded PPFs directly from puerarin with the acceptor conversion ranging 82-92 %. The bi-enzymic cascade synthesis of PPFs in the same reactor avoided the isolation of the intermediate product P1a and it is appropriate for use at industrial scale. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9SDS of cas: 470-69-9).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.SDS of cas: 470-69-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Miyazaki, Takatsugu et al. published their research in Journal of Biological Chemistry in 2020 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Computed Properties of C18H32O16

Structure-function analysis of silkworm sucrose hydrolase uncovers the mechanism of substrate specificity in GH13 subfamily 17 exo-α-glucosidases was written by Miyazaki, Takatsugu;Park, Enoch Y.. And the article was included in Journal of Biological Chemistry in 2020.Computed Properties of C18H32O16 This article mentions the following:

The domestic silkworm Bombyx mori expresses two sucrose-hydrolyzing enzymes, BmSUH and BmSUC1, belonging to glycoside hydrolase family 13 subfamily 17 (GH13_17) and GH32, resp. BmSUH has little activity on maltooligosaccharides, whereas other insect GH13_17 α-glucosidases are active on sucrose and maltooligosaccharides. Little is currently known about the structural mechanisms and substrate specificity of GH13_17 enzymes. In this study, we examined the crystal structures of BmSUH without ligands; in complexes with substrates, products, and inhibitors; and complexed with its covalent intermediate at 1.60-1.85 Å resolutions These structures revealed that the conformations of amino acid residues around subsite -1 are notably different at each step of the hydrolytic reaction. Such changes have not been previously reported among GH13 enzymes, including exo- and endo-acting hydrolases, such as α-glucosidases and α-amylases. Amino acid residues at subsite +1 are not conserved in BmSUH and other GH13_17 α-glucosidases, but subsite -1 residues are absolutely conserved. Substitutions in three subsite +1 residues, Gln191, Tyr251, and Glu440, decreased sucrose hydrolysis and increased maltase activity of BmSUH, indicating that these residues are key for determining its substrate specificity. These results provide detailed insights into structure-function relationships in GH13 enzymes and into the mol. evolution of insect GH13_17 α-glucosidases. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Computed Properties of C18H32O16).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Computed Properties of C18H32O16

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Chi, Liandi et al. published their research in Journal of Pharmaceutical and Biomedical Analysis in 2018 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Product Details of 470-69-9

Development and application of bio-sample quantification to evaluate stability and pharmacokinetics of inulin-type fructo-oligosaccharides from Morinda Officinalis was written by Chi, Liandi;Chen, Lingxiao;Zhang, Jiwen;Zhao, Jing;Li, Shaoping;Zheng, Ying. And the article was included in Journal of Pharmaceutical and Biomedical Analysis in 2018.Product Details of 470-69-9 This article mentions the following:

Inulin-type fructooligosaccharides (FOS) purified from Morinda Officinalis, with ds.p. (DP) from 3 to 9, have been approved in China as an oral prescribed drug for mild and moderate depression episode, while the stability and oral absorption of this FOS mixtures are largely unknown. As the main active component and quality control marker for above FOS, DP5 was selected as the representative FOS in this study. Desalting method by ion exchange resin was developed to treat bio-sample, followed by separation and quantification by high performance liquid chromatog.-charged aerosol detector. Results showed that the DP5 was stepwisely hydrolyzed in simulated gastric fluid and gut microbiota, while maintained stable in intestinal fluid. DP5 has poor permeability across Caco-2 monolayer with Papp of 5.22 × 10-7 cm/s, and very poor oral absorption with bioavailability of (0.50 ± 0.12)% in rat. In conclusion, FOS in Morinda Officinalis demonstrated poor chem. stability in simulated gastric fluid and human gut microbiota, and low oral absorption in rats. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Product Details of 470-69-9).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Product Details of 470-69-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Wu, Silin et al. published their research in International Journal of Molecular Sciences in 2021 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Synthetic Route of C18H32O16

A fructan exohydrolase from maize degrades both inulin and levan and co-exists with 1-kestotriose in maize was written by Wu, Silin;Greiner, Steffen;Ma, Chongjian;Zhong, Jiaxin;Huang, Xiaojia;Rausch, Thomas;Zhao, Hongbo. And the article was included in International Journal of Molecular Sciences in 2021.Synthetic Route of C18H32O16 This article mentions the following:

Enzymes with fructan exohydrolase (FEH) activity are present not only in fructan-synthesizing species but also in non-fructan plants. This has led to speculation about their functions in non-fructan species. Here, a cell wall invertase-related Zm-6&1-FEH2 with no ‘classical’ invertase motif was identified in maize. Following heterologous expression in Pichia pastoris and in Nicotiana benthamiana leaves, the enzyme activity of recombinant Zm-6&1-FEH2 displays substrate specificity with respect to inulin and levan. Subcellular localization showed Zm-6&1-FEH2 exclusively localized in the apoplast, and its expression profile was strongly dependent on plant development and in response to drought and abscisic acid. Furthermore, formation of 1-kestotriose, an oligofructan, was detected in vivo and in vitro and could be hydrolyzed by Zm-6&1-FEH2. In summary, these results support that Zm-6&1-FEH2 enzyme from maize can degrade both inulin-type and levan-type fructans, and the implications of the co-existence of Zm-6&1-FEH2 and 1-kestotriose are discussed. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Synthetic Route of C18H32O16).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Synthetic Route of C18H32O16

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Fan, Rong et al. published their research in Separation and Purification Technology in 2020 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Quality Control of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Production and purification of fructo-oligosaccharides using an enzyme membrane bioreactor and subsequent fermentation with probiotic Bacillus coagulans was written by Fan, Rong;Burghardt, Jan P.;Prell, Florian;Zorn, Holger;Czermak, Peter. And the article was included in Separation and Purification Technology in 2020.Quality Control of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol This article mentions the following:

Fructo-oligosaccharides (FOS) are low-calorie sweeteners that can be synthesized by the transfructosylation of sucrose using enzymes known as fructosyltransferases. However, enzymic conversion is inhibited by the accumulation of glucose as a byproduct, which limits the conversion rate and yield. We therefore developed a semi-continuous production process in an enzyme membrane bioreactor (EMBR) system followed by fermentation with the probiotic bacterium Bacillus coagulans. Filtration experiments were conducted in total recycle mode to evaluate membrane fouling using the resistance-in-series model. We found that fouling was predominantly caused by the accumulation of proteins at the membrane surface, which accounted for 29.6-95.5% of the total filtration resistance depending on the conditions. Using these data, we were able to achieve a stable filtration flux that fulfilled the requirements of the EMBR system by regulating the filtration parameters. The average concentration of total FOS in the products of EMBR reached 270 g·L-1, which was 4.6% higher than the batch process. Subsequently, the crude FOS preparation was treated by fed-batch fermentation with B. coagulans. The monosaccharides in the reaction mix (glucose and fructose) were completely removed, increasing the concentration of FOS to 195.9 g·L-1 and the purity to 96.6%. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Quality Control of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Quality Control of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Jiang, Jikang et al. published their research in LWT–Food Science and Technology in 2022 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Application In Synthesis of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

The effect of inoculation Leuconostoc mesenteroides and Lactiplantibacillus plantarum on the quality of Pleurotus eryngii Jiaosu was written by Jiang, Jikang;Li, Wenxiang;Yu, Shuping. And the article was included in LWT–Food Science and Technology in 2022.Application In Synthesis of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol This article mentions the following:

To investigate the effects of inoculating Leuconostoc mesenteroides or Lactiplantibacillus plantarum on the changes in metabolites in Pleurotus eryngii Jiaosu, a fermented plant extract rich in nutrients and bioactive compounds, the physicochem. and metabolite features of the treated Jiaosu were compared to those of spontaneously-fermented Jiaosu. The physicochem. features of Jiaosu fermented with Leuconostoc mesenteroides or Lactiplantibacillus plantarum were superior to spontaneously-fermented Jiaosu. An Partial Least Squares Discrimination Anal. (PLS-DA) score plot showed a clear difference in metabolites between spontaneous fermentation group (SFG) and inoculated Lactiplantibacillus plantarum group (LPG). Metabolites were remarkably different between LPG and SFG on the first day of fermentation The differential metabolites included sugars, acids and alcs. This study highlights the applicability of GC-MS based metabolomics as a tool to monitor Jiaosu fermentation In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Application In Synthesis of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Application In Synthesis of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Farias, David de Paulo et al. published their research in Food Research International in 2020 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Safety of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Distribution of nutrients and functional potential in fractions of Eugenia pyriformis: An underutilized native Brazilian fruit was written by Farias, David de Paulo;de Araujo, Fabio Fernandes;Neri-Numa, Iramaia Angelica;Dias-Audibert, Flavia Luisa;Delafiori, Jeany;Catharino, Rodrigo Ramos;Pastore, Glaucia Maria. And the article was included in Food Research International in 2020.Safety of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol This article mentions the following:

Uvaia is a Brazilian native species whose fruit has few studies on the nutritional composition and antioxidant properties. In this study, we evaluated for the first time the proximate composition, mineral content, carbohydrate profile, identification of organic compounds, and determination of antioxidant properties in two fractions of this fruit (edible fraction and seed). Edible fraction showed the highest content of ash, lipids, proteins, total fibers, minerals mainly K and Mg (1557.61 and 124.40 mg 100 g-1, resp.), and carbohydrates such as fructose, sucrose, glucose (123.08; 64.40; and 42.39 mg g-1, resp.), and maltotetraose (G4). From the ESI-LTQ-XL-MS/MS anal., it was possible to identify 22 compounds in the edible fraction and 16 compounds in the uvaia seed, including organic acids, phenolic acids and flavonoids. On the other hand, uvaia seed had the highest content of total phenolics, flavonoids and antioxidant capacity. These results suggest that this fruit has great potential to be used in industry, with emphasis on making food with functional claims. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Safety of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Safety of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Ji, Yang et al. published their research in Phytomedicine in 2021 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Quality Control of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Comparison of effects on colitis-associated tumorigenesis and gut microbiota in mice between Ophiocordyceps sinensis and Cordyceps militaris was written by Ji, Yang;Tao, Tianyi;Zhang, Junmiao;Su, Anxiang;Zhao, Liyan;Chen, Hui;Hu, Qiuhui. And the article was included in Phytomedicine in 2021.Quality Control of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol This article mentions the following:

Gut microbiota plays an indispensable role in the treatment of inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). As traditional medicinal fungi, previous studies have shown that Ophiocordyceps sinensis could better maintain intestinal health via promoting the growth of probiotics in vitro compared with Cordyceps militaris. However, the detailed pharmacol. activities and clin. efficacy of O. sinensis and C. militaris are still elusive. We aimed to evaluate the different actions of O. sinensis and C. militaris on colitis-associated tumorigenesis in Azoxymethane (AOM)/Dextran Sulfate Sodium (DSS)-treated mice and explore the potential gut microbiota-dependent mechanisms. C57BL/6 mice (Male, 4 wk old) were used to construct the AOM/DSS-induced CAC mice model. The mice were administered with 0.6 mg/g/d O. sinensis or C. militaris for 12 wk. Its worth noting that fecal microbiota transplantation (FMT) and antibiotic treatment were used to investigated the complex interactions between the medicinal fungi, gut microbiota and colonic tumorigenesis. O. sinensis treatment significantly increased the body weight and survival rate, reduced the number of colon tumors, improved the damage of colon epithelial tissue, restored the crypt structure and alleviate the colonic inflammation in AOM/DSS-treated mice. RT-qPCR results indicated that O. sinensis partly regulated the Wnt/β-catenin signaling via alleviating the overexpression of β-catenin, TCF4 and c-Myc genes in adjacent noncancerous tissues. Compared with C. militaris, O. sinensis showed better anti-tumor activity. Gut microbiota anal. revealed that O. sinensis reversed the decline of gut microbiota diversity and the structural disorder induced by AOM/DSS. Spearmans correlation anal. showed that O. sinensis promoted the growth of Parabacteroides goldsteinii and Bifidobacterium pseudolongum PV8-2, which were pos. correlated with the anti-tumor activity and the production of SCFAs. FMT combined with antibiotic treatment showed that horizontal fecal transfer derived from O. sinensis-treated mice improved the intestinal inflammation and alleviated the colitis-associated tumorigenesis, which was consistent with the direct ingestion of O. sinensis. O. sinensis could better attenuate colitis-associated tumorigenesis compared with C. militaris. These effects might be at least partially due to the increased abundance of probiotics, especially P. goldsteinii and B. pseudolongum PV8-2. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Quality Control of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Quality Control of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Escobedo-Garcia, Sarai et al. published their research in Plant Foods for Human Nutrition (New York, NY, United States) in 2020 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.HPLC of Formula: 470-69-9

Functionality of Agave Bagasse as Supplement for the Development of Prebiotics-Enriched Foods was written by Escobedo-Garcia, Sarai;Salas-Tovar, Jesus A.;Flores-Gallegos, Adriana C.;Contreras-Esquivel, Juan C.;Gonzalez-Montemayor, Angela M.;Lopez, Mercedes G.;Rodriguez-Herrera, Raul. And the article was included in Plant Foods for Human Nutrition (New York, NY, United States) in 2020.HPLC of Formula: 470-69-9 This article mentions the following:

Agave bagasse is a fibrous-like material obtained during aguamiel extraction, which is also in contact with indigenous microbiota of agave plant during aguamiel fermentation This plant is a well-known carrier of the prebiotic fructan-type carbohydrates, which have multiple ascribable health benefits. In the present work, the potential of ashen and green agave bagasse as functional ingredients in supplemented cookies was studied. For its application, the chem., functional, properties of agave bagasses and formulated cookies were evaluated, as well as the phys. properties of cookies. Chem. characterization was carried out by the proximate anal. of both bagasses and cookies, besides, the anal. of oligosaccharides was made by thin-layer chromatog. and high-performance anion-exchange chromatog. In the same way, functional properties such as oil holding capacity, organic mol. absorption capacity, swelling capacity, and water holding capacity were analyzed in both agave bagasses and supplemented cookies. Finally, modifications in color and texture due to bagasse addition was studied through an anal. of total color difference and a penetrometric test, resp. In this sense, ashen and green agave bagasses demonstrated chem. and functional properties for use in the food industry, since they increased oil holding capacity of cookies and transferred prebiotic fructooligosaccharides to both agave bagasse formulations, which remain active as a prebiotic ingredient in cookies after in vitro digestion and cookie manufacture, including thermal treatment. Hence, agave bagasse could be considered a valuable alternative for the addition of the nutritionally-relevant dietary fiber in healthier foods. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9HPLC of Formula: 470-69-9).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.HPLC of Formula: 470-69-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem