Liu, Yuanfeng et al. published their research in Riyong Huaxue Gongye in 2002 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Category: tetrahydrofurans

Study of synthesis of sucrose octaacetate was written by Liu, Yuanfeng;Wumanjiang, E-Li;Wen, Bin. And the article was included in Riyong Huaxue Gongye in 2002.Category: tetrahydrofurans This article mentions the following:

Sucrose octaacetate, a nonionic surfactant, was prepared by esterification with Ac2O using several alkali metal salt catalysts. The effect of reaction conditions on product yield was studied. Under optimum conditions, the product yield reached 93.8%. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Category: tetrahydrofurans).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Category: tetrahydrofurans

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Wise, Paul M. et al. published their research in Pulmonary Pharmacology & Therapeutics in 2012 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Recommanded Product: 126-14-7

Sweet taste and menthol increase cough reflex thresholds was written by Wise, Paul M.;Breslin, Paul A. S.;Dalton, Pamela. And the article was included in Pulmonary Pharmacology & Therapeutics in 2012.Recommanded Product: 126-14-7 This article mentions the following:

Cough is a vital protective reflex that is triggered by both mech. and chem. stimuli. The current experiments explored how chemosensory stimuli modulate this important reflex. Cough thresholds were measured using a single-inhalation capsaicin challenge. Experiment 1 examined the impact of sweet taste: Cough thresholds were measured after rinsing the mouth with a sucrose solution (sweet) or with water (control). Experiment 2 examined the impact of menthol: Cough thresholds were measured after inhaling headspace above a menthol solution (menthol vapor) or headspace above the mineral oil solvent (control). Experiment 3 examined the impact of rinsing the mouth with a (bitter) sucrose octaacetate solution Rinsing with sucrose and inhaling menthol vapor significantly increased measured cough thresholds. Rinsing with sucrose octaacete caused a non-significant decrease in cough thresholds, an important demonstration of specificity. Decreases in cough reflex sensitivity from sucrose or menthol could help explain why cough syrups without pharmacol. active ingredients are often almost as effective as formulations with an added drug. Further, the results support the idea that adding menthol to cigarettes might make tobacco smoke more tolerable for beginning smokers, at least in part, by reducing the sensitivity of an important airway defense mechanism. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Recommanded Product: 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Recommanded Product: 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Caicedo, Alejandro et al. published their research in Science (Washington, DC, United States) in 2001 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Safety of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate

Taste receptor cells that discriminate between bitter stimuli was written by Caicedo, Alejandro;Roper, Stephen D.. And the article was included in Science (Washington, DC, United States) in 2001.Safety of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate This article mentions the following:

Recent studies showing that single taste bud cells express multiple bitter taste receptors have reignited a long-standing controversy over whether single gustatory receptor cells respond selectively or broadly to tastants. We examined calcium responses of rat taste receptor cells in situ to a panel of bitter compounds to determine whether individual cells distinguish between bitter stimuli. Most bitter-responsive taste cells were activated by only one out of five compounds tested. In taste cells that responded to multiple stimuli, there were no significant associations between any two stimuli. Bitter sensation does not appear to occur through the activation of a homogeneous population of broadly tuned bitter-sensitive taste cells. Instead, different bitter stimuli may activate different subpopulations of bitter-sensitive taste cells. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Safety of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Safety of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Hurrey, Michael L. et al. published their research in Langmuir in 2006 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Category: tetrahydrofurans

Examination of Glass Transitions in CO2-Processed, Peracetylated Sugars Using Sum Frequency Generation Spectroscopy was written by Hurrey, Michael L.;Wallen, Scott L.. And the article was included in Langmuir in 2006.Category: tetrahydrofurans This article mentions the following:

The present study utilizes vibrational sum frequency generation (SFG) spectroscopy to study changes in the surface crystallinity of various peracetylated sugars, a class of materials that have a high affinity for carbon dioxide (CO2). Studies of the solid-air interface of acetylated β-cyclodextrin (Ac-β-CD) and sucrose octaacetate (SOA) show that diffuse reflectance SFG spectroscopy is sensitive to changes in crystallinity from processing with either heat or solvation in CO2, due to the loss of signal after glassification occurs. β-D-Glucose pentaacetate (Ac-β-GLC) was used as a control for this experiment due to the fact that it does not undergo a crystalline phase transition, regardless of processing conditions. The crystalline to amorphous transitions of these bulk materials were verified using differential scanning calorimetry (DSC) as a function of thermal and CO2 processing. In addition, preliminary results suggest that the SFG technique is sensitive in detecting the degree of crystallinity at the interface as a result of incomplete processing and presents new opportunities for the examination and detection of surface crystallinity changes. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Category: tetrahydrofurans).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Category: tetrahydrofurans

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Yu, Zhelin et al. published their research in Journal of Magnetic Resonance in 2014 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Category: tetrahydrofurans

Rapid-scan EPR of immobilized nitroxides was written by Yu, Zhelin;Quine, Richard W.;Rinard, George A.;Tseitlin, Mark;Elajaili, Hanan;Kathirvelu, Velavan;Clouston, Laura J.;Boratynski, Przemyslaw J.;Rajca, Andrzej;Stein, Richard;Mchaourab, Hassane;Eaton, Sandra S.;Eaton, Gareth R.. And the article was included in Journal of Magnetic Resonance in 2014.Category: tetrahydrofurans This article mentions the following:

X-band ESR spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for 14N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for 15N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10” magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Category: tetrahydrofurans).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Category: tetrahydrofurans

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Zenkevich, I. G. et al. published their research in Journal of Analytical Chemistry in 2005 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Related Products of 126-14-7

A new application of McReynolds constants to the characterization of the chromatographic properties of stationary phases was written by Zenkevich, I. G.;Makarov, A. A.. And the article was included in Journal of Analytical Chemistry in 2005.Related Products of 126-14-7 This article mentions the following:

An algorithm is proposed for comparing the McReynolds constants of new gas-chromatog. stationary phases with data for not only known individual substances but also their binary combinations. In most cases, sets of these parameters for the chromatog. properties of new stationary phases are inconsistent with the data for a restricted set of previously characterized phases; however, they are consistent with the properties of phase combinations. This can be interpreted in terms of the absence of specific properties. Exceptions were found only among stationary phases bearing some specific mol. fragments (such as nitro groups) and individual crown ethers. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Related Products of 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Related Products of 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Martin, Laura E. et al. published their research in Chemical Senses in 2019 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Product Details of 126-14-7

Bitter-induced salivary proteins increase detection threshold of quinine, but not sucrose was written by Martin, Laura E.;Kay, Kristen E.;Torregrossa, Ann-Marie. And the article was included in Chemical Senses in 2019.Product Details of 126-14-7 This article mentions the following:

Exposures to dietary tannic acid (TA, 3%) and quinine (0.375%) upregulate partially overlapping sets of salivary proteins which are concurrent with changes in taste-driven behaviors, such as rate of feeding and brief access licking to quinine. In addition, the presence of salivary proteins reduces chorda tympani responding to quinine. Together these data suggest that salivary proteins play a role in bitter taste. We hypothesized that salivary proteins altered orosensory feedback to bitter by decreasing sensitivity to the stimulus. To that end, we used diet exposure to alter salivary proteins, then assessed an animal’s ability to detect quinine, using a 2-response operant task. Rats were asked to discriminate descending concentrations of quinine from water in a modified forced-choice paradigm, before and after exposure to diets that alter salivary protein expression in a similar way (0.375% quinine or 3% TA), or 1 of 2 control diets. Control animals received either a bitter diet that does not upregulate salivary proteins (4% sucrose octaacetate), or a nonbitter diet. The rats exposed to salivary protein-inducing diets significantly decreased their performance (had higher detection thresholds) after diet exposure, whereas rats in the control conditions did not alter performance after diet exposure. A fifth group of animals were trained to detect sucrose before and after they were maintained on the 3% TA diet. There was no significant difference in performance, suggesting that these shifts in threshold are stimulus specific rather than task specific. Taken together, these results suggest that salivary proteins reduce sensitivity to quinine. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Product Details of 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Product Details of 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Ivanov, Mikhail Yu. et al. published their research in Journal of Physical Chemistry Letters in 2018 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.COA of Formula: C28H38O19

Structural Anomalies in Ionic Liquids near the Glass Transition Revealed by Pulse EPR was written by Ivanov, Mikhail Yu.;Prikhod’ko, Sergey A.;Adonin, Nicolay Yu.;Kirilyuk, Igor A.;Adichtchev, Sergey V.;Surovtsev, Nikolay V.;Dzuba, Sergei A.;Fedin, Matvey V.. And the article was included in Journal of Physical Chemistry Letters in 2018.COA of Formula: C28H38O19 This article mentions the following:

Unusual phys. and chem. properties of ionic liquids (ILs) open up prospects for various applications. We report the first observation of d./rigidity heterogeneities in a series of ILs near the glass transition temperature (Tg) by means of pulse ESR (EPR). Unprecedented suppression of mol. mobility is evidenced near the glass transition, which is assigned to unusual structural rearrangements of ILs on the nanometer scale. Indeed, pulse and continuous wave EPR clearly indicate the occurrence of heterogeneities near Tg, which exist in a rather broad temperature range of ∼50 K. The two types of local environments are evidenced, being drastically different by their stiffness. The more rigid one suppresses mol. mobility, whereas the softer one instead promotes diffusive mol. rotation. Such properties of ILs near Tg are of general importance; moreover, the observed d./rigidity heterogeneities controlled by temperature might be considered as a new type of tunable reaction nanoenvironment. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7COA of Formula: C28H38O19).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.COA of Formula: C28H38O19

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Guan, Huan-xiang et al. published their research in Tuijin Jishu in 2007 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Computed Properties of C28H38O19

Study on decreasing the burning rate of nitrate ester plasticized polyether propellant was written by Guan, Huan-xiang;Liu, Yun-fei;Yao, Wei-shang;Tan, Hui-min. And the article was included in Tuijin Jishu in 2007.Computed Properties of C28H38O19 This article mentions the following:

Reducing burning rate of nitrate ester plasticized polyether (NEPE) propellant was studied by means of adding some burning rate modifiers and adjusting its composition The results show that burning rate of the propellant can be decreased by enlarging the particle size of AP, reducing the ratio of NG/DEGDN, decreasing the content of AP and adding little content of burning rate modifiers. The burning rate under 7.0 MPa can be reduced to 6.87 mm/s with ratio 1:1:1 of burning rate modifiers glycerol triacetate/polyoxymethylene/sucrose octa-acetate. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Computed Properties of C28H38O19).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Computed Properties of C28H38O19

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Laffort, Paul et al. published their research in Open Journal of Physical Chemistry in 2018 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Synthetic Route of C28H38O19

Updated definition of the three solvent descriptors related to the van der waals forces in solutions was written by Laffort, Paul. And the article was included in Open Journal of Physical Chemistry in 2018.Synthetic Route of C28H38O19 This article mentions the following:

Innovative viewpoint on the older topic of the van der Waals forces, is of interesting and significant issue to be concerned in both the fields related to the fundamental investigation and thus valuable in guiding the new physio-chem. phenomena and processes for both academic research and practical applications. The intermol. Van der Waals forces involved in solutions have been recently deeply reconsidered as far as the solute side is concerned. More precisely, the solute descriptors (or parameters) exptl. established, have been accurately related to mol. features of a Simplified Mol. Topol. In the present study, an equivalent result is reached on the solvent side. Both exptl. parameters have been obtained simultaneously in previous Gas Liquid Chromatog. studies for 121 Volatile Organic Compounds and 11 liquid stationary phases, via an original Multiplicative Matrix Anal. In that exptl. step, five groups of forces were identified, two of hydrogen bonding and three of Van der Waals: 1. dispersion (London), 2. orientation or polarity strictly speaking (Keesom), and 3. induction-polarizability (Debye). At this stage, an attempt of characterization the solvent parameters via the SMT procedure has been limited to those related to the Van der Waals forces, those related to the hydrogen bonding being for now left aside. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Synthetic Route of C28H38O19).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Synthetic Route of C28H38O19

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem