Song, Jingwen et al. published their research in Molecular Cell in 2022 | CAS: 118-00-3

2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.HPLC of Formula: 118-00-3

Regulation of alternative polyadenylation by the C2H2-zinc-finger protein Sp1 was written by Song, Jingwen;Nabeel-Shah, Syed;Pu, Shuye;Lee, Hyunmin;Braunschweig, Ulrich;Ni, Zuyao;Ahmed, Nujhat;Marcon, Edyta;Zhong, Guoqing;Ray, Debashish;Ha, Kevin C. H.;Guo, Xinghua;Zhang, Zhaolei;Hughes, Timothy R.;Blencowe, Benjamin J.;Greenblatt, Jack F.. And the article was included in Molecular Cell in 2022.HPLC of Formula: 118-00-3 This article mentions the following:

Alternative polyadenylation (APA) enhances gene regulatory potential by increasing the diversity of mRNA transcripts. 3′ UTR shortening through APA correlates with enhanced cellular proliferation and is a widespread phenomenon in tumor cells. Here, we show that the ubiquitously expressed transcription factor Sp1 binds RNA in vivo and is a common repressor of distal poly(A) site usage. RNA sequencing identified 2,344 genes (36% of the total mapped mRNA transcripts) with lengthened 3′ UTRs upon Sp1 depletion. Sp1 preferentially binds the 3′ UTRs of such lengthened transcripts and inhibits cleavage at distal sites by interacting with the subunits of the core cleavage and polyadenylation (CPA) machinery. The 3′ UTR lengths of Sp1 target genes in breast cancer patient RNA-seq data correlate with Sp1 expression levels, implicating Sp1-mediated APA regulation in modulating tumorigenic properties. Taken together, our findings provide insights into the mechanism for dynamic APA regulation by unraveling a previously unknown function of the DNA-binding transcription factor Sp1. In the experiment, the researchers used many compounds, for example, 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3HPLC of Formula: 118-00-3).

2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.HPLC of Formula: 118-00-3

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Xia, Rongrong et al. published their research in LWT–Food Science and Technology in 2022 | CAS: 118-00-3

2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Related Products of 118-00-3

Cutting root treatment combined with low-temperature storage regimes on non-volatile and volatile compounds of Oudemansiella raphanipes was written by Xia, Rongrong;Wang, Zicheng;Xu, Heran;Hou, Zhenshan;Li, Yunting;Wang, Yafei;Feng, Yao;Zhang, Xiang;Xin, Guang. And the article was included in LWT–Food Science and Technology in 2022.Related Products of 118-00-3 This article mentions the following:

Oudemansiella raphanipes (O. raphanipes) has recently been gaining popularity due to its active and flavor compounds In this study, the profiles of phenolics, flavonoids, non-volatile and volatile compounds of fresh O. raphanipes were subjected to cutting root (CR) and pulling root (PR) harvesting methods during different storage temperatures (5°C and 20°C) were investigated. The results showed that CR treatment effectively increased phenolic and flavonoid contents, maintained the sensory scores and the umami value based on e-tongue, increased more C8 volatile contents, and inhibited off-flavor acids production during 5°C storage. The EUC values of the fresh O. raphanipes ranged from 4.72 to 23.66 g monosodium glutamate (MSG) 100 g-1, which TAVs were at a relatively high level in CR treatment than in PR treatment. A two-way anal. of variance (ANOVA) and principal component anal. (PCA) revealed statistically significant differences in different harvesting methods that affected the mushroom flavor. Eleven components were screened as taste characteristics contributors by partial least squares regression model (PLS-R) anal., including Glu, umami nucleotides, and 1-octene-3-ol and 3-octanone. Thus, the cutting root treatment is a promising method for obtaining the high flavor quality of fresh O. raphanipes during cooling storage. In the experiment, the researchers used many compounds, for example, 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3Related Products of 118-00-3).

2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Related Products of 118-00-3

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Liu, Tongtong et al. published their research in Biomedicine & Pharmacotherapy in 2022 | CAS: 118-00-3

2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Formula: C10H13N5O5

Cardioprotection effect of Yiqi-Huoxue-Jiangzhuo formula in a chronic kidney disease mouse model associated with gut microbiota modulation and NLRP3 inflammasome inhibition was written by Liu, Tongtong;Lu, Xiaoguang;Gao, Wenya;Zhai, Yuanyuan;Li, Han;Li, Shangheng;Yang, Liping;Ma, Fang;Zhan, Yongli;Mao, Huimin. And the article was included in Biomedicine & Pharmacotherapy in 2022.Formula: C10H13N5O5 This article mentions the following:

The pathogenesis and treatment of cardiovascular disease mediated by chronic kidney disease (CKD) are key research questions. Specifically, the mechanisms underlying the cardiorenal protective effect of Yiqi-Huoxue-Jiangzhuo formula (YHJF), a traditional Chinese herbal medicine, have not yet been clarified. A classical CKD mouse model was constructed by 5/6 nephrectomy (Nx) to study the effects of YHJF intervention on 5/6 Nx mice cardiorenal function, gut microbial composition, gut-derived metabolites, and NLRP3 inflammasome pathways. YHJF improved cardiac dysfunction and reversed left ventricular hypertrophy, myocardial hypertrophy, and interstitial fibrosis in 5/6 Nx mice. In addition, YHJF inhibited activation of the NLRP3 inflammasome and downregulated the expression of TNF-α and IL-1β both in the heart and serum; reconstitution of the intestinal flora imbalance was also found in 5/6 Nx mice treated with YHJF. Spearman’s correlation and redundancy analyses showed that changes in the intestinal flora of 5/6 Nx mice were related to clin. phenotype and serum inflammatory levels. Treatment with YHJF effectively protected the heart function of 5/6 Nx mice; this effect was attributed to inhibition of NLRP3 inflammasome activation and regulation of intestinal microbial composition and derived metabolites. YHJF has potential for improving intestinal flora imbalance and gut-derived toxin accumulation in patients with CKD, thereby preventing cardiovascular complications. In the experiment, the researchers used many compounds, for example, 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3Formula: C10H13N5O5).

2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Formula: C10H13N5O5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Sun, Yujiao et al. published their research in Food Research International in 2022 | CAS: 118-00-3

2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Computed Properties of C10H13N5O5

Microbiome-metabolome responses of Fuzhuan brick tea crude polysaccharides with immune-protective benefit in cyclophosphamide-induced immunosuppressive mice was written by Sun, Yujiao;Wang, Fan;Liu, Yang;Liu, Shuai;An, Yuye;Xue, Haiyan;Wang, Jiankang;Xia, Fei;Chen, Xuefeng;Cao, Yungang. And the article was included in Food Research International in 2022.Computed Properties of C10H13N5O5 This article mentions the following:

The present study investigated the immune-protective effect of polysaccharides from Fuzhuan brick tea (FBTPs) in cyclophosphamide (Cy)-induced immunosuppressive mice. The results showed that high-dose of FBTPs administration remarkably alleviated Cy-evoked immune damage through improving the body features, organ indexes, immune responses and oxidative stress in the mice. Further microbiota anal. revealed that FBTPs obviously restored Cy-evoked microbial dysbiosis by increasing several beneficial bacteria Lactobacillus, Allobaculum, Unclassified_f_Lachnospiraceae and norank_f_Lachnospiraceae, while reducing Bacteroides, norank_f_Ruminococcaceae, Colidextribacter, Alloprevotella, norank_f_Desulfovibrionaceae and Helicobacter. Meanwhile, metabolomics anal. found that FBTPs significantly altered a range of microbial metabolites, including inosine, deoxyinosine, taurine, sinapic acid, maltotriose, butyric acid, lysophosphatidyl cholines (LysoPCs), lysophosphatidic acids (LysoPAs) and choline. These altered metabolites were involved in purine metabolism, ABC transporters, sulfur metabolism, neuroactive ligand-receptor interaction, biosynthesis of phenylpropanoids, carbohydrate digestion and absorption, protein digestion and absorption, choline metabolism in cancer and glycerophospholipid metabolism pathways, which were mainly related to immune responses, antioxidant capacity and energy supply of the immunosuppressive mice. Addnl., some significant correlations were observed between the specific microbiota and effective metabolites. These results provide a novel insight into the immune-protective effect of FBTPs on regulating the intestinal microbiota and metabolism, which are helpful for thoroughly understanding the nutrition of FBTPs and providing a solid basis for the deeper utilization of Fuzhuan brick tea (FBT). In the experiment, the researchers used many compounds, for example, 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3Computed Properties of C10H13N5O5).

2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Computed Properties of C10H13N5O5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Masuda, Isao et al. published their research in Cell Reports in 2022 | CAS: 118-00-3

2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Related Products of 118-00-3

tRNA methylation resolves codon usage bias at the limit of cell viability was written by Masuda, Isao;Yamaki, Yuka;Detroja, Rajesh;Tagore, Somnath;Moore, Henry;Maharjan, Sunita;Nakano, Yuko;Christian, Thomas;Matsubara, Ryuma;Lowe, Todd M.;Frenkel-Morgenstern, Milana;Hou, Ya-Ming. And the article was included in Cell Reports in 2022.Related Products of 118-00-3 This article mentions the following:

Codon usage of each genome is closely correlated with the abundance of tRNA isoacceptors. How codon usage bias is resolved by tRNA post-transcriptional modifications is largely unknown. Here we demonstrate that the N1-methylation of guanosine at position 37 (m1G37) on the 3-side of the anticodon, while not directly responsible for reading of codons, is a neutralizer that resolves differential decoding of proline codons. A genome-wide suppressor screen of a non-viable Escherichia coli strain, lacking m1G37, identifies proS suppressor mutations, indicating a coupling of methylation with tRNA prolyl-aminoacylation that sets the limit of cell viability. Using these suppressors, where prolyl-aminoacylation is decoupled from tRNA methylation, we show that m1G37 neutralizes differential translation of proline codons by the major isoacceptor. Lack of m1G37 inactivates this neutralization and exposes the need for a minor isoacceptor for cell viability. This work has medical implications for bacterial species that exclusively use the major isoacceptor for survival. In the experiment, the researchers used many compounds, for example, 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3Related Products of 118-00-3).

2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Related Products of 118-00-3

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Niemann, Birte et al. published their research in Nature (London, United Kingdom) in 2022 | CAS: 118-00-3

2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Safety of 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one

Apoptotic brown adipocytes enhance energy expenditure via extracellular inosine was written by Niemann, Birte;Haufs-Brusberg, Saskia;Puetz, Laura;Feickert, Martin;Jaeckstein, Michelle Y.;Hoffmann, Anne;Zurkovic, Jelena;Heine, Markus;Trautmann, Eva-Maria;Mueller, Christa E.;Toenjes, Anke;Schlein, Christian;Jafari, Azin;Eltzschig, Holger K.;Gnad, Thorsten;Blueher, Matthias;Krahmer, Natalie;Kovacs, Peter;Heeren, Joerg;Pfeifer, Alexander. And the article was included in Nature (London, United Kingdom) in 2022.Safety of 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one This article mentions the following:

Brown adipose tissue (BAT) dissipates energy and promotes cardiometabolic health. Loss of BAT during obesity and ageing is a principal hurdle for BAT-centered obesity therapies, but not much is known about BAT apoptosis. Here, untargeted metabolomics demonstrated that apoptotic brown adipocytes release a specific pattern of metabolites with purine metabolites being highly enriched. This apoptotic secretome enhances expression of the thermogenic program in healthy adipocytes. This effect is mediated by the purine inosine that stimulates energy expenditure in brown adipocytes by the cyclic adenosine monophosphate-protein kinase A signalling pathway. Treatment of mice with inosine increased BAT-dependent energy expenditure and induced ′browning′ of white adipose tissue. Mechanistically, the equilibrative nucleoside transporter 1 (ENT1, SLC29A1) regulates inosine levels in BAT: ENT1-deficiency increases extracellular inosine levels and consequently enhances thermogenic adipocyte differentiation. In mice, pharmacol. inhibition of ENT1 as well as global and adipose-specific ablation enhanced BAT activity and counteracted diet-induced obesity, resp. In human brown adipocytes, knockdown or blockade of ENT1 increased extracellular inosine, which enhanced thermogenic capacity. Conversely, high ENT1 levels correlated with lower expression of the thermogenic marker UCP1 in human adipose tissues. Finally, the Ile216Thr loss of function mutation in human ENT1 was associated with significantly lower body mass index and 59% lower odds of obesity for individuals carrying the Thr variant. Our data identify inosine as a metabolite released during apoptosis with a ′replace me′ signalling function that regulates thermogenic fat and counteracts obesity. In the experiment, the researchers used many compounds, for example, 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3Safety of 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one).

2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Safety of 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Masuda, Isao et al. published their research in Cell Reports in 2022 | CAS: 118-00-3

2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Related Products of 118-00-3

tRNA methylation resolves codon usage bias at the limit of cell viability was written by Masuda, Isao;Yamaki, Yuka;Detroja, Rajesh;Tagore, Somnath;Moore, Henry;Maharjan, Sunita;Nakano, Yuko;Christian, Thomas;Matsubara, Ryuma;Lowe, Todd M.;Frenkel-Morgenstern, Milana;Hou, Ya-Ming. And the article was included in Cell Reports in 2022.Related Products of 118-00-3 This article mentions the following:

Codon usage of each genome is closely correlated with the abundance of tRNA isoacceptors. How codon usage bias is resolved by tRNA post-transcriptional modifications is largely unknown. Here we demonstrate that the N1-methylation of guanosine at position 37 (m1G37) on the 3-side of the anticodon, while not directly responsible for reading of codons, is a neutralizer that resolves differential decoding of proline codons. A genome-wide suppressor screen of a non-viable Escherichia coli strain, lacking m1G37, identifies proS suppressor mutations, indicating a coupling of methylation with tRNA prolyl-aminoacylation that sets the limit of cell viability. Using these suppressors, where prolyl-aminoacylation is decoupled from tRNA methylation, we show that m1G37 neutralizes differential translation of proline codons by the major isoacceptor. Lack of m1G37 inactivates this neutralization and exposes the need for a minor isoacceptor for cell viability. This work has medical implications for bacterial species that exclusively use the major isoacceptor for survival. In the experiment, the researchers used many compounds, for example, 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3Related Products of 118-00-3).

2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Related Products of 118-00-3

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem