Schoning, Verena et al. published their research in Frontiers in Pharmacology in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application In Synthesis of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate

Effectiveness of antiviral therapy in highly-transmissible variants of SARS-CoV-2: a modeling and simulation study was written by Schoning, Verena;Kern, Charlotte;Chaccour, Carlos;Hammann, Felix. And the article was included in Frontiers in Pharmacology in 2022.Application In Synthesis of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate The following contents are mentioned in the article:

As of Oct. 2021, neither established agents (e.g., hydroxychloroquine) nor exptl. drugs have lived up to their initial promise as antiviral treatment against SARS-CoV-2 infection. While vaccines are being globally deployed, variants of concern (VOCs) are emerging with the potential for vaccine escape. VOCs are characterized by a higher within-host transmissibility, and this may alter their susceptibility to antiviral treatment. Here we describe a model to understand the effect of changes in withinhost reproduction number R0, as proxy for transmissibility, of VOCs on the effectiveness of antiviral therapy with molnupiravir through modeling and simulation. Molnupiravir (EIDD2801 or MK 4482) is an orally bioavailable antiviral drug inhibiting viral replication through lethal mutagenesis, ultimately leading to viral extinction. We simulated 800 mg molnupiravir treatment every 12 h for 5 days, with treatment initiated at different time points before and after infection. Modeled viral mutations range from 1.25 to 2-fold greater transmissibility than wild type, but also include putative co-adapted variants with lower transmissibility (0.75-fold). Antiviral efficacy was correlated with R0, making highly transmissible VOCs more sensitive to antiviral therapy. Total viral load was reduced by up to 70% in highly transmissible variants compared to 30% in wild type if treatment was started in the first 1-3 days post inoculation. Less transmissible variants appear less susceptible. Our findings suggest there may be a role for pre- or post-exposure prophylactic antiviral treatment in areas with presence of highly transmissible SARS-CoV-2 variants. Furthermore, clin. trials with borderline efficacious results should consider identifying VOCs and examine their impact in post-hoc anal. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Application In Synthesis of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application In Synthesis of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem