More research is needed about (cis-Tetrahydrofuran-2,5-diyl)dimethanol

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.Computed Properties of C6H12O3, you can also check out more blogs about2144-40-3

Chemistry is an experimental science, and the best way to enjoy it and learn about it is performing experiments. Computed Properties of C6H12O3. Introducing a new discovery about 2144-40-3, Name is (cis-Tetrahydrofuran-2,5-diyl)dimethanol

The use of biomass as a solution to satisfy the pressing needs for a fully sustainable biocommodity industry has been explored for a long time. However, limited success has been obtained. In this study, a highly effective two-stage procedure for the direct preparation of para-xylene (PX) from 5-hydroxymethylfurfural (HMF) and formic acid in one pot is described; these chemicals are two of the major bio-based feedstocks that offer the potential to address urgent needs for the green, sustainable production of drop-in chemical entities. The use of a robust, efficient heterogeneous catalyst, namely, bimetallic Pd-decorated Au clusters anchored on tetragonal-phase zirconia, is crucial to the success of this strategy. This multifunctional catalytic system can not only facilitate a low-energy-barrier H2-free pathway for the rapid, nearly exclusive formation of 2,5-dimethylfuran (DMF) from HMF but also enable the subsequent ultraselective production of PX by the dehydrative aromatization of the resultant DMF with ethylene. With increasing pressure around the world to move toward a bio-based economy, it is essential that industrially important commodity chemicals can be readily accessed from biomass resources. Para-xylene (PX) synthesis is one such target that is being actively pursued through the development of several biorefinery schemes based on integrated biomass processing. Significant progress has recently been achieved either in the selective synthesis of biorenewable PX from Diels-Alder-like coupling of ethylene with 2,5-dimethylfuran (DMF) or making DMF from 5-hydroxymethylfurfural (HMF) using hydrogen as the terminal reductant. However, a green and direct conversion of HMF, an essential feedstock source for future biorefinery schemes, into PX has yet to be developed. We have established an integrated process that directly converts HMF to PX in a highly compact and hydrogen-independent manner, thereby providing a new perspective on the potential of advanced biorefinery technologies. Cao and colleagues describe an alternative strategy for producing para-xylene through a more sustainable method than the current bio-based approaches. The strategy relies on an integrated conversion of 5-hydroxymethylfurfural with formic acid and ethylene, made possible by the use of a single multifunctional catalyst based on bimetallic Pd-decorated Au deposited on tetragonal-phase zirconia. The proposed process is particularly appealing because it is fully fossil independent, implying a viable and greener biorefinery scheme.

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.Computed Properties of C6H12O3, you can also check out more blogs about2144-40-3

Reference:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem