Hindered dialkyl ether synthesis with electrogenerated carbocations was written by Xiang, Jinbao;Shang, Ming;Kawamata, Yu;Lundberg, Helena;Reisberg, Solomon H.;Chen, Miao;Mykhailiuk, Pavel;Beutner, Gregory;Collins, Michael R.;Davies, Alyn;Del Bel, Matthew;Gallego, Gary M.;Spangler, Jillian E.;Starr, Jeremy;Yang, Shouliang;Blackmond, Donna G.;Baran, Phil S.. And the article was included in Nature (London, United Kingdom) in 2019.HPLC of Formula: 16874-33-2 This article mentions the following:
Hindered ethers are of high value for various applications; however, they remain an underexplored area of chem. space because they are difficult to synthesize via conventional reactions. Such motifs are highly coveted in medicinal chem., because extensive substitution about the ether bond prevents unwanted metabolic processes that can lead to rapid degradation in vivo. Here we report a simple route towards the synthesis of hindered ethers, in which electrochem. oxidation is used to liberate high-energy carbocations from simple carboxylic acids. These reactive carbocation intermediates, which are generated with low electrochem. potentials, capture an alc. donor under non-acidic conditions; this enables the formation of a range of ethers (more than 80 have been prepared here) that would otherwise be difficult to access. The carbocations can also be intercepted by simple nucleophiles, leading to the formation of hindered alcs. and even alkyl fluorides. This method was evaluated for its ability to circumvent the synthetic bottlenecks encountered in the preparation of 12 chem. scaffolds, leading to higher yields of the required products, in addition to substantial reductions in the number of steps and the amount of labor required to prepare them. The use of mol. probes and the results of kinetic studies support the proposed mechanism and the role of additives under the conditions examined The reaction manifold that we report here demonstrates the power of electrochem. to access highly reactive intermediates under mild conditions and, in turn, the substantial improvements in efficiency that can be achieved with these otherwise-inaccessible intermediates. In the experiment, the researchers used many compounds, for example, Tetrahydrofuran-2-carboxylic acid (cas: 16874-33-2HPLC of Formula: 16874-33-2).
Tetrahydrofuran-2-carboxylic acid (cas: 16874-33-2) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.HPLC of Formula: 16874-33-2
Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem