Azuma, Takashi et al. published their research in Environmental Science and Pollution Research in 2018 | CAS: 3094-09-5

1-((2R,3R,4S,5R)-3,4-Dihydroxy-5-methyltetrahydrofuran-2-yl)-5-fluoropyrimidine-2,4(1H,3H)-dione (cas: 3094-09-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Related Products of 3094-09-5

Performance and efficiency of removal of pharmaceutical compounds from hospital wastewater by lab-scale biological treatment system was written by Azuma, Takashi;Otomo, Kana;Kunitou, Mari;Shimizu, Mai;Hosomaru, Kaori;Mikata, Shiori;Mino, Yoshiki;Hayashi, Tetsuya. And the article was included in Environmental Science and Pollution Research in 2018.Related Products of 3094-09-5 This article mentions the following:

The fate of pharmaceuticals after discharged from hospital into wastewater was clarified exptl. by using a new lab-scale conventional activated sludge (CAS) treatment reactor. The 43 target compounds belong to nine therapeutic classes (antivirals, antibacterials, anticancer drugs, psychotropics, antihypertensives, analgesic-antipyretics, contrast media, herbal medicines, and phytoestrogens) were selected with inclusion of 16 newly estimated compounds The efficiency of the present reactor was estimated by comparing the reaction rate constant of the solid-water partition coefficients (log Kd) between liquid and solid samples and half-life during 48-h experiment obtained by using hospital effluents with those obtained by using STP wastewater. The results that no significant difference in removal efficiency was observed between both water samples (P > 0.05) indicate high reliability of the present lab-scale reactor. The actual rates of removal when hospital effluent was applied varied widely (mean, 59 ± 40%) independent of type of the pharmaceuticals. More than 90% of 17 compounds were removed after 8 h of treatment. However, the values for psychotropics (mean, 19 ± 26%) and contrast media (mean, 24 ± 17%) were generally low, indicating high stability. The log Kd values ranged from 1.3 to 4.8. Notably, clarithromycin, acridine, and glycitein could be removed in both liquid and solid phases. The dominant removal mechanisms were found to be different for individual pharmaceutical. These results suggest the effectiveness of introduction of the lab-scale biol. treatment system for development of a new solution for discharge of pharmaceuticals from hospital. In the experiment, the researchers used many compounds, for example, 1-((2R,3R,4S,5R)-3,4-Dihydroxy-5-methyltetrahydrofuran-2-yl)-5-fluoropyrimidine-2,4(1H,3H)-dione (cas: 3094-09-5Related Products of 3094-09-5).

1-((2R,3R,4S,5R)-3,4-Dihydroxy-5-methyltetrahydrofuran-2-yl)-5-fluoropyrimidine-2,4(1H,3H)-dione (cas: 3094-09-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Related Products of 3094-09-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem