Huang, Bo-Shun et al. published their research in Organic & Biomolecular Chemistry in 2020 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Synthetic Route of C12H20O6

β-Selective xylulofuranosylation via a conformationally-restricted glycosyl donor was written by Huang, Bo-Shun;Lowary, Todd L.. And the article was included in Organic & Biomolecular Chemistry in 2020.Synthetic Route of C12H20O6 This article mentions the following:

Reported is the first stereoselective method for β-xylulofuranosylation, which employs 3,4-O-xylylene-protected thioglycoside donors. For most acceptors, the best results were observed with a donor that possesses both the xylylene group and a benzoate ester at O-1. To demonstrate its utility, the methodol. was applied to the first synthesis of the pentasaccharide repeating unit from the lipopolysaccharide O-antigen of Yersinia enterocolitica serovars, a structure containing two β-xylulofuranose residues. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Synthetic Route of C12H20O6).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Synthetic Route of C12H20O6

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Qiao, Lixin et al. published their research in Shipin Kexue (Beijing, China) in 2015 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Related Products of 126-14-7

Immobilizing taste-bud tissues of pigs to prepare bitterness biosensor was written by Qiao, Lixin;Liu, Tingting;Pang, Guangchang. And the article was included in Shipin Kexue (Beijing, China) in 2015.Related Products of 126-14-7 This article mentions the following:

Using sodium alginate-starch gel as a fixing agent, taste-bud tissues of pigs were fixed between two nuclear microporous membranes to make a sandwich-type sensing membrane, which was then fixed to a glassy carbon electrode to make a biosensor electrode. By using electrochem. workstation, the current produced when sucrose octaacetate, denatonium and quercetin stimulated their corresponding receptors were tested. The results showed that the lowest limit of detection of this biosensor for sucrose octaacetate, denatonium and quercetin were 1 × 10-14, 1 × 10-13 and 1 × 10-14 mol/L and the maximum rate of change of the current was found at concentration levels of 1 × 10-8, 1 × 10-6 and 1 × 10-9 mol/L, resp., indicating that their receptors are saturated It was demonstrated that the interaction curves of sucrose octaacetate, denatonium and quercetin with their resp. receptors exhibited high correlation (R2 = 0.957 3, 0.987 3 and 0.996 4) in the concentration ranges of 1 × 10-14-1 × 10-11 mol/L, 1 × 10-13-1 × 10-7 mol/L and 1 × 10-14-1 × 10-9 mol/L, resp. This study not only quant. determined the interaction of the taste receptor and bitter substances with a new biosensor, but also provided a simple approach for monitoring bitter substances and investigating the mechanism of ligand-receptor interaction. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Related Products of 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Related Products of 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Farias, David de Paulo et al. published their research in Food Research International in 2020 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Safety of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Distribution of nutrients and functional potential in fractions of Eugenia pyriformis: An underutilized native Brazilian fruit was written by Farias, David de Paulo;de Araujo, Fabio Fernandes;Neri-Numa, Iramaia Angelica;Dias-Audibert, Flavia Luisa;Delafiori, Jeany;Catharino, Rodrigo Ramos;Pastore, Glaucia Maria. And the article was included in Food Research International in 2020.Safety of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol This article mentions the following:

Uvaia is a Brazilian native species whose fruit has few studies on the nutritional composition and antioxidant properties. In this study, we evaluated for the first time the proximate composition, mineral content, carbohydrate profile, identification of organic compounds, and determination of antioxidant properties in two fractions of this fruit (edible fraction and seed). Edible fraction showed the highest content of ash, lipids, proteins, total fibers, minerals mainly K and Mg (1557.61 and 124.40 mg 100 g-1, resp.), and carbohydrates such as fructose, sucrose, glucose (123.08; 64.40; and 42.39 mg g-1, resp.), and maltotetraose (G4). From the ESI-LTQ-XL-MS/MS anal., it was possible to identify 22 compounds in the edible fraction and 16 compounds in the uvaia seed, including organic acids, phenolic acids and flavonoids. On the other hand, uvaia seed had the highest content of total phenolics, flavonoids and antioxidant capacity. These results suggest that this fruit has great potential to be used in industry, with emphasis on making food with functional claims. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Safety of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Safety of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Alvarez-Martinez, Ignacio et al. published their research in European Journal of Organic Chemistry in 2020 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Reference of 582-52-5

Synthesis and Glycosylation Properties of C6-Silylated Ido- and Gluco-Pyranosyl Donors was written by Alvarez-Martinez, Ignacio;Pedersen, Christian Marcus. And the article was included in European Journal of Organic Chemistry in 2020.Reference of 582-52-5 This article mentions the following:

Silyl groups are widely used as alc. protecting groups and their study has provided insight on some very remarkable structure and reactivity features within carbohydrate chem. However, not much work has been put into the effect on the reactivity of silyl groups directly attached to the sugar carbon chain. In this work, we have developed a synthetic methodol. to obtain both D-glucosyl and L-idosyl donors containing a dimethylphenylsilyl group directly attached to C6. Glycosylation and competition experiments with different glycosyl acceptors have shown that this group is completely stable under glycosylation conditions and enhances reactivity beyond what a benzyl group attached to the sugar oxygen would do. Finally, we found adequate conditions for the proto-desilylation of Si-containing glycosides to yield the 6-deoxy sugar analog. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Reference of 582-52-5).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Reference of 582-52-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Fernandez-Lorente, Gloria et al. published their research in Tetrahedron in 2003 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Quality Control of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate

Regio-selective deprotection of peracetylated sugars via lipase hydrolysis was written by Fernandez-Lorente, Gloria;Palomo, Jose M.;Cocca, Jany;Mateo, Cesar;Moro, Paola;Terreni, Marco;Fernandez-Lafuente, Roberto;Guisan, Jose M.. And the article was included in Tetrahedron in 2003.Quality Control of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate This article mentions the following:

Purified lipases (via interfacial activation on hydrophobic supports) from different microbial extracts have been evaluated in the regio-selective hydrolysis of peracetylated sugars (peracetylated glucose, ribose and sucrose). Among the enzymes tested, lipases from Candida rugosa (CRL) and from Pseudomonas fluorescens (PFL) exhibited the best properties in these reactions.Then, we have prepared two different immobilized lipase preparations obtained by interfacial activation on hydrophobic supports or by covalent attachment on glutaraldehyde agarose. Interfacially activated lipases exhibited a higher activity than covalently attached enzymes (even by a 100-fold factor), giving the higher yields of mono deacetylated sugars (in some instances by more than a threefold factor) in short reaction times. In the hydrolysis of 1,2,3,5-tetra-O-acetyl-β-D-ribofuranose catalyzed by PFL adsorbed on octyl agarosa, hydrolyzed mainly the three position (30% of yield) while the CRL gave the hydrolysis only in position five (about 50% of yield).Depending on the enzyme immobilized preparation, we have been able also to obtain selective hydrolysis of 1,2,3,4,6-penta-O-acetyl-α/β-D-glucopyranose obtaining a free hydroxyl group in position one, four or six. Moreover, selective hydrolysis in the 4′ position of peracetylated sucrose was achieved when the hydrolysis is performed with CRL immobilized on octyl-agarose (yield was 77%). In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Quality Control of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Quality Control of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Gaddam, Shalini et al. published their research in AAPS PharmSciTech in 2018 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.COA of Formula: C28H38O19

Sucrose Octaacetate Chemical Kinetics and Shelf Lives at Various Formulation pHs was written by Gaddam, Shalini;Stagner, William C.. And the article was included in AAPS PharmSciTech in 2018.COA of Formula: C28H38O19 This article mentions the following:

Developing pediatric friendly dosage forms is a high priority worldwide. Sucrose octaacetate (SOA) has been recommended for use as a surrogate for bitter tasting active pharmaceutical ingredients. Even though SOA has found a number of human use applications and has been employed for decades, there are no rigorous chem. kinetic studies reported. A recently reported SOA stability-indicating method was used to perform SOA chem. kinetic and stability studies. As part of the chem. kinetic study, reaction order, activation energies, extrapolated rate constants, pH-rate profiles at 4 and 25°C, and estimated shelf lives at 4 and 25°C at different buffer pHs are provided. The estimated SOA shelf lives at 25°C and pHs 4.00, 5.20, and 6.00 were 25.3, 114, and 27.4 days, resp. At 4°C, SOA’s estimated shelf lives were 0.478, 5.26, and 1.47 years at pHs 4.00, 5.20, and 6.00, resp. SOA can be formulated at pHs 4 to 6 and stored at 25°C for short-duration (less than 25 days) uses such as a bitter tasting surrogate for fundamental taste mechanism studies or brief taste masking assessment clin. studies. For longer term solution studies, like being used as a bitter tasting control for blinded clin. trials, SOA should be formulated at the optimum pH of 5.40 and refrigerated at 4°C for maximum stability. The reported data can be used as a starting point for developing stable SOA formulations and estimating shelf life. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7COA of Formula: C28H38O19).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.COA of Formula: C28H38O19

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Wang, Haijing et al. published their research in Journal of Chromatographic Science in 2015 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Computed Properties of C28H38O19

Determination of sucrose in honey with derivatization/solid-phase microextraction and gas-chromatography/mass spectrometry was written by Wang, Haijing;Geppert, Helmut;Fischer, Thomas;Wieprecht Detlev Moeller, Wolfgang. And the article was included in Journal of Chromatographic Science in 2015.Computed Properties of C28H38O19 This article mentions the following:

A new method for the determination of sucrose in honey with derivatization solid-phase microextraction and gas chromatog./mass spectrometry (D-SPME-GC/MS) was developed. The method incorporates a sample derivatization with acetic anhydride using N-methylimidazole as the catalyst and the subsequent enrichment of the analyte in a Polyacrylate-SPME fiber. Results show that 100 μL N-methylimidazole and 800 μL acetic anhydride were sufficient to complete the acetylation for sucrose in 100 μL aqueous sample at room temperature For SPME, an enrichment time of 30 min was sufficient. SPME was performed by immersing the fiber into the solution with addnl. vibration. Then, the analyte was desorbed for 5 min at 280°C in the GC/MS injection port with splitless mode. The present method exhibits good linearity at a concentration range of 0.3-8% of sucrose in honey with excellent regression (R = 0.9993). The method has been successfully applied to the control of sucrose adulteration in honey. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Computed Properties of C28H38O19).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Computed Properties of C28H38O19

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Feng, Feng-cou et al. published their research in Jinri Yaoxue in 2013 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.SDS of cas: 126-14-7

Determination of sucrose octaacetate by residual titration was written by Feng, Feng-cou;Pang, Xue-bin;Li, Shu-guang;Qiu, Ying-heng;Li, Jun. And the article was included in Jinri Yaoxue in 2013.SDS of cas: 126-14-7 This article mentions the following:

Objective: To establish a method for the determination of sucrose octaacetate. Methods: Residual titration was used, after the reaction of sucrose octaacetate with sodium hydroxide VS, the residual sodium hydroxide VS was titrated with sulfuric acid VS. Results: The average recovery was 100.1%, and RSD was 0.2%. Conclusion: The method is simple, feasible and reliable. It can be used for the quality control of sucrose octaacetate. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7SDS of cas: 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.SDS of cas: 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Jiang, Jikang et al. published their research in LWT–Food Science and Technology in 2022 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Application In Synthesis of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

The effect of inoculation Leuconostoc mesenteroides and Lactiplantibacillus plantarum on the quality of Pleurotus eryngii Jiaosu was written by Jiang, Jikang;Li, Wenxiang;Yu, Shuping. And the article was included in LWT–Food Science and Technology in 2022.Application In Synthesis of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol This article mentions the following:

To investigate the effects of inoculating Leuconostoc mesenteroides or Lactiplantibacillus plantarum on the changes in metabolites in Pleurotus eryngii Jiaosu, a fermented plant extract rich in nutrients and bioactive compounds, the physicochem. and metabolite features of the treated Jiaosu were compared to those of spontaneously-fermented Jiaosu. The physicochem. features of Jiaosu fermented with Leuconostoc mesenteroides or Lactiplantibacillus plantarum were superior to spontaneously-fermented Jiaosu. An Partial Least Squares Discrimination Anal. (PLS-DA) score plot showed a clear difference in metabolites between spontaneous fermentation group (SFG) and inoculated Lactiplantibacillus plantarum group (LPG). Metabolites were remarkably different between LPG and SFG on the first day of fermentation The differential metabolites included sugars, acids and alcs. This study highlights the applicability of GC-MS based metabolomics as a tool to monitor Jiaosu fermentation In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Application In Synthesis of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Application In Synthesis of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Fan, Rong et al. published their research in Separation and Purification Technology in 2020 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Quality Control of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Production and purification of fructo-oligosaccharides using an enzyme membrane bioreactor and subsequent fermentation with probiotic Bacillus coagulans was written by Fan, Rong;Burghardt, Jan P.;Prell, Florian;Zorn, Holger;Czermak, Peter. And the article was included in Separation and Purification Technology in 2020.Quality Control of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol This article mentions the following:

Fructo-oligosaccharides (FOS) are low-calorie sweeteners that can be synthesized by the transfructosylation of sucrose using enzymes known as fructosyltransferases. However, enzymic conversion is inhibited by the accumulation of glucose as a byproduct, which limits the conversion rate and yield. We therefore developed a semi-continuous production process in an enzyme membrane bioreactor (EMBR) system followed by fermentation with the probiotic bacterium Bacillus coagulans. Filtration experiments were conducted in total recycle mode to evaluate membrane fouling using the resistance-in-series model. We found that fouling was predominantly caused by the accumulation of proteins at the membrane surface, which accounted for 29.6-95.5% of the total filtration resistance depending on the conditions. Using these data, we were able to achieve a stable filtration flux that fulfilled the requirements of the EMBR system by regulating the filtration parameters. The average concentration of total FOS in the products of EMBR reached 270 g·L-1, which was 4.6% higher than the batch process. Subsequently, the crude FOS preparation was treated by fed-batch fermentation with B. coagulans. The monosaccharides in the reaction mix (glucose and fructose) were completely removed, increasing the concentration of FOS to 195.9 g·L-1 and the purity to 96.6%. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Quality Control of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Quality Control of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem