Structural Anomalies in Ionic Liquids near the Glass Transition Revealed by Pulse EPR was written by Ivanov, Mikhail Yu.;Prikhod’ko, Sergey A.;Adonin, Nicolay Yu.;Kirilyuk, Igor A.;Adichtchev, Sergey V.;Surovtsev, Nikolay V.;Dzuba, Sergei A.;Fedin, Matvey V.. And the article was included in Journal of Physical Chemistry Letters in 2018.COA of Formula: C28H38O19 This article mentions the following:
Unusual phys. and chem. properties of ionic liquids (ILs) open up prospects for various applications. We report the first observation of d./rigidity heterogeneities in a series of ILs near the glass transition temperature (Tg) by means of pulse ESR (EPR). Unprecedented suppression of mol. mobility is evidenced near the glass transition, which is assigned to unusual structural rearrangements of ILs on the nanometer scale. Indeed, pulse and continuous wave EPR clearly indicate the occurrence of heterogeneities near Tg, which exist in a rather broad temperature range of ∼50 K. The two types of local environments are evidenced, being drastically different by their stiffness. The more rigid one suppresses mol. mobility, whereas the softer one instead promotes diffusive mol. rotation. Such properties of ILs near Tg are of general importance; moreover, the observed d./rigidity heterogeneities controlled by temperature might be considered as a new type of tunable reaction nanoenvironment. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7COA of Formula: C28H38O19).
(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.COA of Formula: C28H38O19
Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem