Zhong, Junzhen et al. published their research in Food Chemistry in 2019 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Related Products of 470-69-9

Comparison of antigenicity and conformational changes to β-lactoglobulin following kestose glycation reaction with and without dynamic high-pressure microfluidization treatment was written by Zhong, Junzhen;Yu, Hongda;Tu, Yue;Zhou, Lei;Liu, Wei;Luo, Shunjing;Liu, Chengmei;Prakash, Sangeeta. And the article was included in Food Chemistry in 2019.Related Products of 470-69-9 This article mentions the following:

Previous work indicated that conformational changes of β-lactoglobulin (β-LG) induced by dynamic high pressure microfluidization (DHPM) was related to the increase of antigenicity. In this study, β-LG glycated with 1-kestose and combined with DHPM decreased the antigenicity of β-LG. The antigenicity of control, β-LG-kestose (0.1 MPa) and β-LG-kestose (80 MPa) were 100, 79 and 42 μg/mL resp. The mol. weight of β-LG conjugated to kestose increased from 18.4 to 19.6 kDa and its conformation scarcely changed. Conversely, combined with DHPM treatment (80 MPa), β-LG conjugated to kestose formed two conjugates with mol. weight of 18.8 and 19.8 kDa, resp. Furthermore, the unfolding of β-LG as a result of the treatments is reflected by a decrease of intrinsic and synchronous fluorescence intensity and changes to the secondary structure. The conformational changes induced by DHPM and glycation treatments synergistically decrease the antigenicity of β-LG due to more masked or disrupted epitopes. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Related Products of 470-69-9).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Related Products of 470-69-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Madejczyk, O. et al. published their research in Molecular Pharmaceutics in 2017 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Recommanded Product: 126-14-7

Studying the Crystallization of Various Polymorphic Forms of Nifedipine from Binary Mixtures with the Use of Different Experimental Techniques was written by Madejczyk, O.;Kaminska, E.;Tarnacka, M.;Dulski, M.;Jurkiewicz, K.;Kaminski, K.;Paluch, M.. And the article was included in Molecular Pharmaceutics in 2017.Recommanded Product: 126-14-7 This article mentions the following:

In this paper the crystal growth of nifedipine from pure system and from binary mixtures composed of active substance (API) and two acetylated disaccharides, maltose and sucrose (NIF-acMAL, NIF-acSUC, 5:1 weight ratio), was investigated. Optical snapshots supported by X-ray diffraction (XRD) and Fourier transform IR spectroscopy (FTIR) measurements showed that mainly β and α forms of nifedipine grow up in all investigated samples. They also revealed that the morphol. of growing crystals strongly depends on the presence of modified carbohydrates and temperature conditions. Interestingly, it was found that the activation barrier for the crystal growth of the β polymorph is not affected by acetylated saccharides while the one estimated for the α form changes significantly from 48.5 kJ/mol (pure API) up to 122 kJ/mol (NIF-acMAL system). Moreover, the relationship between the crystal growth rate and structural relaxation times for pure NIF and solid dispersions were analyzed. It turned out that there is a clear decoupling between the crystal growth rate and structural dynamics in both NIF-acMAL and NIF-acSUC binary mixtures This is in line with recent reports indicating the decoupling phenomenon to be a universal feature of soft matter in the close vicinity of the glass transition temperature In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Recommanded Product: 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Recommanded Product: 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Perez, Enrique R. et al. published their research in Journal of Industrial Microbiology & Biotechnology in 2021 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Related Products of 470-69-9

Fructooligosaccharides production by immobilized Pichia pastoris cells expressing Schedonorus arundinaceus sucrose:sucrose 1-fructosyltransferase was written by Perez, Enrique R.;Martinez, Duniesky;Menendez, Carmen;Alfonso, Dubiel;Rodriguez, Ivan;Trujillo, Luis E.;Sobrino, Alina;Ramirez, Ricardo;Pimentel, Eulogio;Hernandez, Lazaro. And the article was included in Journal of Industrial Microbiology & Biotechnology in 2021.Related Products of 470-69-9 This article mentions the following:

Fructooligosaccharides (FOSs)-fructose-based oligosaccharides-are typical prebiotics with health-promoting effects in humans and animals. The trisaccharide 1-kestotriose is the most attractive inulin-type FOS. We previously reported a recombinant sucrose:sucrose 1-fructosyltransferase (1-SST, EC 2.4.1.99) from Schedonorus arundinaceus (Sa) that efficiently converts sucrose into 1-kestotriose. In this study, Pichia pastoris PGFT6x-308 constitutively expressing nine copies of the Sa1-SST gene displayed fructosyl-transferase activity in undisrupted biomass (49.8 U/mL) and culture supernatant (120.7 U/mL) in fed-batch fermentation (72 h) with sugarcane molasses. Toluene permeabilization increased 2.3-fold the Sa1-SSTrec activity of whole cells entrapped in calcium-alginate beads. The reaction with refined or raw sugar (600 g/l) yielded 1-kestotriose and 1,1-kestotetraose in a ratio of 8:2 with their sum representing above 55% (wt/wt) of total carbohydrates. The FOSs yield decreased to 45% (wt/wt) when sugarcane syrup and molasses were used as cheaper sucrose sources. The beads retained 80% residual Sa1-SSTrec activity after a 30-day batchwise operation with refined cane sugar at 30°C and pH 5.5. The immobilized biocatalyst is attractive for the continuous production of short-chain FOSs, most particularly 1-kestotriose. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Related Products of 470-69-9).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Related Products of 470-69-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Karmaus, Agnes L. et al. published their research in Food and Chemical Toxicology in 2017 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.COA of Formula: C28H38O19

Curation of food-relevant chemicals in ToxCast was written by Karmaus, Agnes L.;Trautman, Thomas D.;Krishan, Mansi;Filer, Dayne L.;Fix, Laurel A.. And the article was included in Food and Chemical Toxicology in 2017.COA of Formula: C28H38O19 This article mentions the following:

High-throughput in vitro assays and exposure prediction efforts are paving the way for modeling chem. risk; however, the utility of such extensive datasets can be limited or misleading when annotation fails to capture current chem. usage. To address this data gap and provide context for food-use in the United States (US), manual curation of food-relevant chems. in ToxCast was conducted. Chems. were categorized into three food-use categories: (1) direct food additives, (2) indirect food additives, or (3) pesticide residues. Manual curation resulted in 30% of chems. having new annotation as well as the removal of 319 chems., most due to cancellation or only foreign usage. These results highlight that manual curation of chem. use information provided significant insight affecting the overall inventory and chem. categorization. In total, 1211 chems. were confirmed as current day food-use in the US by manual curation; 1154 of these chems. were also identified as food-related in the globally sourced chem. use information from Chem./Product Categories database (CPCat). The refined list of food-use chems. and the sources highlighted for compiling annotated information required to confirm food-use are valuable resources for providing needed context when evaluating large-scale inventories such as ToxCast. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7COA of Formula: C28H38O19).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.COA of Formula: C28H38O19

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Pereira, Ana Paula Aparecida et al. published their research in Food Research International in 2019 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Synthetic Route of C18H32O16

A comprehensive characterization of Solanum lycocarpum St. Hill and Solanum oocarpum Sendtn: Chemical composition and antioxidant properties was written by Pereira, Ana Paula Aparecida;Angolini, Celio Fernando Figueiredo;Paulino, Bruno Nicolau;Lauretti, Leonardo Borges Chatagnier;Orlando, Eduardo Adilson;Silva, Joyce Grazielle Siqueira;Neri-Numa, Iramaia Angelica;Souza, Jane Delane Reis Pimentel;Pallone, Juliana Azevedo Lima;Eberlin, Marcos Nogueira;Pastore, Glaucia Maria. And the article was included in Food Research International in 2019.Synthetic Route of C18H32O16 This article mentions the following:

In this study we evaluated the proximate composition of two Solanaceae fruits from Brazilian Cerrado, their mineral content, volatile organic compounds (VOCs), phenolic compounds profile, and antioxidant capacity employing Oxygen Radical Absorbance Capacity (ORAC) assay, for each part of the fruits (pulp, peel and seeds). Our results showed that the pulp has a high moisture content (74.62-85.40 g/100 g) and soluble fiber (1.29-2.06 g/100 g) content, and low fat, protein, and ash content. The peel exhibited high levels of carbohydrates and total fibers (6.55-11.39 and 12.35-13.12 g/100 g, resp.), while the seed presented high content of fat, protein, and insoluble fiber (10.14-12.62, 9.14-13.24 and 19.84-23.15 g/100 g). Potassium is the main mineral found in both fruits. It is the first time that the carbohydrate profile, volatile components, and phenolic compounds of the fruta-do-lobo and jua-acu are reported. 1-Kestose (GF2) and nystose (GF3) were found in both fruits. The main VOCs of jua-acu were esters, while in fruta-do-lobo, aldehydes were the major components. UPLC-Q-ToF fraction anal. of jua-acu and fruta-do-lobo revealed 24 phenolic compounds, most being hydroxycinnamic acids derivatives in jua-acu, and chlorogenic acids in fruta-do-lobo. The antioxidant capacity (ORAC) of the fruits ranged from 1.35 to 11.51 μmol TE/100 mL of extract These results indicate that Solanum genus can be interesting for the Brazilian fruit market, and that it has potential to be exploited for agroindustry for diversification of fruit products. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Synthetic Route of C18H32O16).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Synthetic Route of C18H32O16

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Zhong, Xuemei et al. published their research in Journal of Organic Chemistry in 2021 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.SDS of cas: 582-52-5

Zinc(II) Iodide-Directed β-Mannosylation: Reaction Selectivity, Mode, and Application was written by Zhong, Xuemei;Zhou, Siai;Ao, Jiaming;Guo, Aoxin;Xiao, Qian;Huang, Yan;Zhu, Wanmeng;Cai, Hui;Ishiwata, Akihiro;Ito, Yukishige;Liu, Xue-Wei;Ding, Feiqing. And the article was included in Journal of Organic Chemistry in 2021.SDS of cas: 582-52-5 This article mentions the following:

A direct, efficient, and versatile glycosylation methodol. promises the systematic synthesis of oligosaccharides and glycoconjugates in a streamlined fashion like the synthesis of medium to long-chain nucleotides and peptides. The development of a generally applicable approach for the construction of 1,2-cis-glycosidic bond with controlled stereoselectivity remains a major challenge, especially for the synthesis of β-mannosides. Here, we report a direct mannosylation strategy mediated by ZnI2, a mild Lewis acid, for the highly stereoselective construction of 1,2-cis-β linkages employing easily accessible 4,6-O-tethered mannosyl trichloroacetimidate donors. The versatility and effectiveness of this strategy were demonstrated with successful β-mannosylation of a wide variety of alc. acceptors, including complex natural products, amino acids, and glycosides. Through iteratively performing ZnI2-mediated mannosylation with the chitobiosyl azide acceptor followed by site-selective deprotection of the mannosylation product, the novel methodol. enables the modular synthesis of the key intermediate trisaccharide with Man-β-(1→4)-GlcNAc-β-(1→4)-GlcNAc linkage for N-glycan synthesis. Theor. investigations with d. functional theory calculations delved into the mechanistic details of this β-selective mannosylation and elucidated two zinc cations’ essential roles as the activating agent of the donor and the principal mediator of the cis-directing intermol. interaction. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5SDS of cas: 582-52-5).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.SDS of cas: 582-52-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Kienle, Maryline et al. published their research in Journal of Medicinal Chemistry in 2020 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Recommanded Product: 582-52-5

Synthesis and Structure-Activity Relationship Studies of C2-Modified Analogs of the Antimycobacterial Natural Product Pyridomycin was written by Kienle, Maryline;Eisenring, Patrick;Stoessel, Barbara;Horlacher, Oliver P.;Hasler, Samuel;van Colen, Gwenaelle;Hartkoorn, Ruben C.;Vocat, Anthony;Cole, Stewart T.;Altmann, Karl-Heinz. And the article was included in Journal of Medicinal Chemistry in 2020.Recommanded Product: 582-52-5 This article mentions the following:

A series of derivatives of the antimycobacterial natural product pyridomycin have been prepared with the C2 side chain attached to the macrocyclic core structure by a C-C single bond, in place of the synthetically more demanding enol ester double bond found in the natural product. Hydrophobic C2 substituents of sufficient size generally provide for potent anti-Mtb activity of these dihydropyridomycins, e.g., I (R = Me, Et, cyclohexyl, CH2Ph), (min. inhibitory concentration (MIC) values around 2.5μM), with several analogs thus approaching the activity of natural pyridomycin. Surprisingly, some of these compounds, in contrast to pyridomycin, are insensitive to overexpression of InhA in Mycobacterium tuberculosis (Mtb). This indicates that their anti-Mtb activity does not critically depend on the inhibition of InhA and that their overall mode of action may differ from that of the original natural product lead. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Recommanded Product: 582-52-5).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Recommanded Product: 582-52-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Khaldari, Iman et al. published their research in Journal of Plant Biochemistry and Biotechnology in 2018 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Related Products of 470-69-9

Expression patterns of the genes encoding fructan active enzymes (FAZYs) alongside fructan constituent profiles in chicory (Cichorium intybus L.): effects of tissue and genotype variations was written by Khaldari, Iman;Naghavi, Mohammad Reza;Peighambari, Seyed Ali;Nasiri, Jaber;Mohammadi, Fatemeh. And the article was included in Journal of Plant Biochemistry and Biotechnology in 2018.Related Products of 470-69-9 This article mentions the following:

Dynamic transcriptional variations of genes encoding fructan active enzymes (FAZYs; 1-SST, 1-FFT, 1-FEHI, 1-FEHII) alongside their potential contributions regarding production/degradation of various carbohydrates (i.e., fructose, glucose, sucrose, 1-kestose, and inulin) were scrutinized in the two distinct genotypes of chicory (Cichorium intybus L.) namely “Germany variety” and “Iranian landrace”, at flowering stage. Germany variety accumulated overall more amounts of fructose, sucrose, and inulin, while Iranian landrace contained the highest proportion of 1-kestose, and glucose. Instead, in both genotypes, maximum transcript levels of 1-FEHI were detected in stem, while root, flower and leaf tissues possessed inferior magnitudes. Considering 1-FEHII, both genotypes exhibited a down-regulated behavior in four tissues (excluding landrace stem). Regarding landrace, both 1-SST and 1-FFT correlated only with glucose, while for Germany variety, 1-SST had a strong association with inulin, 1-ketose, alongside glucose, and 1-FFT had a strong correlation only with glucose. Notably, 1-FEHII neg. correlated with inulin content, indicating an “antagonistic” effect between inulin accumulation/production and 1-FEHII activity. The results, overall, demonstrated that variations in genotypes and/or tissues under study can synergistically/antagonistically influence expression patterns of FAZY genes alongside production/degradation of the corresponding fructans. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Related Products of 470-69-9).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Related Products of 470-69-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Martinez-Gutierrez, Fidel et al. published their research in LWT–Food Science and Technology in 2018 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Safety of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Corrigendum to “Potential use of Agave salmiana as a prebiotic that stimulates the growth of probiotic bacteria” [LWT – Food Sci. Technol. 84 (2017) 151-159] [Erratum to document cited in CA168:198683] was written by Martinez-Gutierrez, Fidel;Ratering, Stefan;Juarez-Flores, Bertha;Godinez-Hernandez, Cesar;Geissler-Plaum, Rita;Prell, Florian;Zorn, Holger;Czermak, Peter;Schnell, Sylvia. And the article was included in LWT–Food Science and Technology in 2018.Safety of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol This article mentions the following:

The authors regret that in the Acknowledgements section, Beno, was referenced incorrectly. The correct acknowledgment is to Beneo. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Safety of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Safety of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Wu, Hongda et al. published their research in Jingxi Shiyou Huagong in 2005 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application of 126-14-7

Enzymatic synthesis of sucrose acetate oleate was written by Wu, Hongda;Zhang, Xianhua;Li, Junsheng;Yan, Liujuan. And the article was included in Jingxi Shiyou Huagong in 2005.Application of 126-14-7 This article mentions the following:

The synthesis of mixed sucrose acetate and oleate was performed by trans-esterification of sucrose octaacetate (I) with Et oleate (II) in organic solvents, using lipase Novo435 as catalyst, and 95% conversion of II was obtained when I/II molar ratio is 1:1. The results of orthogonal experiments indicated that the optimal transesterification conditions were as follows: the usable solvent is tert-amyl alc., reaction temperature is 40°C, and dosages of 10 U/mg lipase and mol. sieve are 20-60 mg and 20 mg to 1 mmol I, resp. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Application of 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application of 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem