Structural characterization and discrimination of Morinda officinalis and processing Morinda officinalis based on metabolite profiling analysis was written by Kang, Liping;Zhang, Yan;Zhou, Li;Yang, Jian;He, Yali;Yang, Shuai;Li, Gai;Hao, Qingxiu;Yu, Yi;Guo, Lanping. And the article was included in Frontiers in Chemistry (Lausanne, Switzerland) in 2021.Electric Literature of C18H32O16 This article mentions the following:
Morindae officinalis Radix (MOR) is a famous traditional Chinese medicine (TCM) and functional food material for invigorating kidneys and tonifying yang. Processed Morindae officinalis Radix (PMOR) is obtained by steaming MOR. Traditionally, the clin. effects are discrepant between processing and nonprocessing herbal medicines. MOR and PMOR are commonly used in both clin. practice and dietary supplements, and the effect of invigorating kidneys and tonifying yang of PMOR is stronger than MOR. To clarify the overall chem. composition and the difference of MOR and PMOR, a method was developed with an ultrahigh-performance liquid chromatog. coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). Among the 110 identified components shared by MOR and PMOR, 55 compounds showed significant differences in contents. Among them, the contents of 29 components, including fructooligosaccharides, monotropein, deacetylasperulosidic acid, geniposide, and anthraquinone glycosides, were higher in MOR than in PMOR; the contents of 26 components, including difructose anhydride sucrose, and iridoid glycoside derivatives, were higher in PMOR than in MOR. Difructose anhydrides and iridoid glycoside derivatives were first discovered in PMOR. These results provided a scientific basis for research on the therapeutic material basis of MOR. It would provide a method for the comparison of processing and nonprocessing in Chinese medicines. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Electric Literature of C18H32O16).
(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Electric Literature of C18H32O16
Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem