Ling, Frederick et al. published their research in Journal of Neuroscience in 2014 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.COA of Formula: C28H38O19

The molecular and cellular basis of taste coding in the legs of Drosophila was written by Ling, Frederick;Dahanukar, Anupama;Weiss, Linnea A.;Kwon, Jae Young;Carlson, John R.. And the article was included in Journal of Neuroscience in 2014.COA of Formula: C28H38O19 This article mentions the following:

To understand the principles of taste coding, it is necessary to understand the functional organization of the taste organs. Although the labellum of the Drosophila melanogaster head has been described in detail, the tarsal segments of the legs, which collectively contain more taste sensilla than the labellum, have received much less attention. We performed a systematic anatomical, physiol., and mol. anal. of the tarsal sensilla of Drosophila. We construct an anatomical map of all 5 tarsal segments of each female leg. The taste sensilla of the female foreleg are systematically tested with a panel of 40 diverse compounds, yielding a response matrix of ∼500 sensillum-tastant combinations. Six types of sensilla are characterized. One type was tuned remarkably broadly: it responded to 19 of 27 bitter compounds tested, as well as sugars; another type responded to neither. The midleg is similar but distinct from the foreleg. The response specificities of the tarsal sensilla differ from those of the labellum, as do n-dimensional taste spaces constructed for each organ, enhancing the capacity of the fly to encode and respond to gustatory information. We examined the expression patterns of all 68 gustatory receptors (Grs). A total of 28 Gr-GAL4 drivers are expressed in the legs. We constructed a receptor-to-sensillum map of the legs and a receptor-to-neuron map. Fourteen Gr-GAL4 drivers are expressed uniquely in the bitter-sensing neuron of the sensillum that is tuned exceptionally broadly. Integration of the mol. and physiol. maps provides insight into the underlying basis of taste coding. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7COA of Formula: C28H38O19).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.COA of Formula: C28H38O19

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Okuyama, Masayuki et al. published their research in Journal of Biological Chemistry in 2021 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Application of 470-69-9

Molecular insight into regioselectivity of transfructosylation catalyzed by GH68 levansucrase and β-fructofuranosidase was written by Okuyama, Masayuki;Serizawa, Ryo;Tanuma, Masanari;Kikuchi, Asako;Sadahiro, Juri;Tagami, Takayoshi;Lang, Weeranuch;Kimura, Atsuo. And the article was included in Journal of Biological Chemistry in 2021.Application of 470-69-9 This article mentions the following:

Glycoside hydrolase family 68 (GH68) enzymes catalyze β-fructosyltransfer from sucrose to another sucrose, the so-called transfructosylation. Although regioselectivity of transfructosylation is divergent in GH68 enzymes, there is insufficient information available on the structural factor(s) involved in the selectivity. Here, we found two GH68 enzymes, β-fructofuranosidase (FFZm) and levansucrase (LSZm), encoded tandemly in the genome of Zymomonas mobilis, displayed different selectivity: FFZm catalyzed the β-(2→1)-transfructosylation (1-TF), whereas LSZm did both of 1-TF and β-(2→6)-transfructosylation (6-TF). We identified His79FFZm and Ala343FFZm and their corresponding Asn84LSZm and Ser345LSZm resp. as the structural factors for those regioselectivities. LSZm with the resp. substitution of FFZm-type His and Ala for its Asn84LSZm and Ser345LSZm (N84H/S345A-LSZm) lost 6-TF and enhanced 1-TF. Conversely, the LSZm-type replacement of His79FFZm and Ala343FFZm in FFZm (H79N/A343S-FFZm) almost lost 1-TF and acquired 6-TF. H79N/A343S-FFZm exhibited the selectivity like LSZm but did not produce the β-(2→6)-fructoside-linked levan and/or long levanooligosaccharides that LSZm did. We assumed Phe189LSZm to be a responsible residue for the elongation of levan chain in LSZm and mutated the corresponding Leu187FFZm in FFZm to Phe. An H79N/L187F/A343S-FFZm produced a higher quantity of long levanooligosaccharides than H79N/A343S-FFZm (or H79N-FFZm), although without levan formation, suggesting that LSZm has another structural factor for levan production We also found that FFZm generated a sucrose analog, β-D-fructofuranosyl α-D-mannopyranoside, by β-fructosyltransfer to D-mannose and regarded His79FFZm and Ala343FFZm as key residues for this acceptor specificity. In summary, this study provides insight into the structural factors of regioselectivity and acceptor specificity in transfructosylation of GH68 enzymes. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Application of 470-69-9).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Application of 470-69-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Qin, Longshan et al. published their research in Food & Function in 2022 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.HPLC of Formula: 470-69-9

Targeting gut microbiota-derived butyrate improves hepatic gluconeogenesis through the cAMP-PKA-GCN5 pathway in late pregnant sows was written by Qin, Longshan;Yao, Weilei;Wang, Tongxin;Jin, Taimin;Guo, Baoyin;Wen, Shu;Huang, Feiruo. And the article was included in Food & Function in 2022.HPLC of Formula: 470-69-9 This article mentions the following:

Short chain fatty acids (SCFAs) produced by gut microbiota affected hepatic glucose metabolism via the gut-liver axis. The present study aimed to investigate the effects of butyrate produced by gut microbiota on hepatic gluconeogenesis in late-pregnancy sows. A total of 240 primiparous sows in late pregnancy were tested for blood glucose using a glucose meter before feeding and grouped according to their blood glucose level as follows: 0-3.0 mmol L-1 (low blood glucose group, LG group) and 3.1-5.0 mmol L-1 (normal blood glucose group, NG group). Colonic SCFAs and microbiota, SCFAs in the portal vein and liver, and acetylation and phosphorylation levels in the liver samples were analyzed. Hepatocytes from pregnant sows were examined for the effect of butyrate on hepatic glucose gluconeogenesis. In vivo experiments showed that the reproductive performance, serum glucose metabolism index, colonic butyrate and butyrate-producing bacteria decreased in the LG group compared with the NG group. Correlation anal. found a pos. correlation among colonic butyrate, butyrate-producing bacteria and the serum glucose metabolism index. Moreover, the hepatic cAMP concentration, PKA activity, GCN5 phosphorylation, and the expression of G6P and PEPCK were decreased and PGC1-α acetylation was increased in the LG group compared with the NG group. In vitro, sodium butyrate significantly stimulated the cAMP concentration, PKA activity, GCN5 phosphorylation, and the expression of G6P and PEPCK and inhibited PGC-1α acetylation in the LG group of hepatocytes from late-pregnancy sows. Interestingly, another in vivo experiment showed that dietary 1-kestose, a natural regulator of gut bacteria, significantly increased butyrate and butyrate-producing bacteria, and improved the reproductive performance and serum glucose metabolism index in late-pregnancy sows. Taken together, we found that targeting gut microbiota-derived butyrate could improve hepatic gluconeogenesis through the cAMP-PKA-GCN5 pathway in late-pregnancy sows. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9HPLC of Formula: 470-69-9).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.HPLC of Formula: 470-69-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Javed et al. published their research in Carbohydrate Research in 2020 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Reference of 582-52-5

Metal-free [3+2] cycloaddition of glycosyl olefinic ester with in situ generated CF3CHN2: Access to CF3-substituted pyrazoline glycoconjugates was written by Javed;Mandal, Pintu Kumar. And the article was included in Carbohydrate Research in 2020.Reference of 582-52-5 This article mentions the following:

An efficient [3+2] cycloaddition of glycosyl olefinic ester with in situ generated CF3CHN2 for the syntheses of CF3-substituted pyrazoline glycoconjugate has been developed. This mild, one-pot reaction condition avoiding the use of metallic catalyst and additive will be useful in the pharmaceutical industry. This reaction features are the broad substrate scope, good functional group tolerance with good to high yields. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Reference of 582-52-5).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Reference of 582-52-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Mathew, Sweety et al. published their research in Journal of Functional Foods in 2018 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Computed Properties of C18H32O16

Metabolic changes of the blood metabolome after a date fruit challenge was written by Mathew, Sweety;Halama, Anna;Abdul Kader, Sara;Choe, Minkyung;Mohney, Robert P.;Malek, Joel A.;Suhre, Karsten. And the article was included in Journal of Functional Foods in 2018.Computed Properties of C18H32O16 This article mentions the following:

Date fruits are rich in phytochems. that have anti-oxidative properties and are therefore considered as functional foods. However, it is unclear which part of the date metabolites actually enter the blood stream and remain bioavailable to exert any beneficial action. To answer this question, we conducted a nutritional challenge study in which we monitored plasma metabolome of 21 healthy volunteers after intake of Khlas, Deglet Nour, and glucose at five time points. Among the 1089 identified blood circulating metabolites, we found mols. that were specific to date consumption, including metabolites of the polyphenols ferulic-, caffeic-, and vanillic acid. Consumption of the sucrose-rich Deglet Nour led to a substantial increase in blood sucrose levels. Interestingly, consumption of serotonin-rich dates did not alter serotonin blood levels, but resulted in a sharp increase in its breakdown product 5-hydroxyindolacetate. We elucidated metabolites present in the blood after date consumption with potential health beneficial effect. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Computed Properties of C18H32O16).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Computed Properties of C18H32O16

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Kranthikumar, Ramagonolla et al. published their research in Organic & Biomolecular Chemistry in 2021 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Product Details of 582-52-5

Toward the synthesis of the hypoxia selective anticancer agent BE-43547 A2 was written by Kranthikumar, Ramagonolla. And the article was included in Organic & Biomolecular Chemistry in 2021.Product Details of 582-52-5 This article mentions the following:

A short and enantioselective synthesis of the 19-epi-BE-43547 A2 chiral framework has been achieved in a high yield (no biol. data). The challenging key C15 tertiary stereo-center was derived from D-glucose. The synthetic strategy involves a Julia-Kocienski olefination to install the lipophilic side chain. An efficient protocol for Z to E isomerization of olefin was developed using a novel UV flow reactor. In addition, an unprecedented oxygen mediated hydroboration and the Krapcho decarboxylation of β-keto lactone were observed In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Product Details of 582-52-5).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Product Details of 582-52-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Sam Chan, Hau Sun et al. published their research in Journal of the American Chemical Society in 2019 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.HPLC of Formula: 582-52-5

Synthesis, Characterization, and Reactivity of Complex Tricyclic Oxonium Ions, Proposed Intermediates in Natural Product Biosynthesis was written by Sam Chan, Hau Sun;Nguyen, Q. Nhu N.;Paton, Robert S.;Burton, Jonathan W.. And the article was included in Journal of the American Chemical Society in 2019.HPLC of Formula: 582-52-5 This article mentions the following:

Reactive intermediates frequently play significant roles in the biosynthesis of numerous classes of natural products although the direct observation of these biosynthetically relevant species is rare. We present here direct evidence for the existence of complex, thermally unstable, tricyclic oxonium ions that have been postulated as key reactive intermediates in the biosynthesis of numerous halogenated natural products from Laurencia species. Evidence for their existence comes from full characterization of these oxonium ions by low-temperature NMR spectroscopy supported by d. functional theory (DFT) calculations, coupled with the direct generation of 10 natural products on exposure of the oxonium ions to various nucleophiles. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5HPLC of Formula: 582-52-5).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.HPLC of Formula: 582-52-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Pott, Delphine M. et al. published their research in Food Chemistry in 2020 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Product Details of 470-69-9

Metabolic reconfiguration of strawberry physiology in response to postharvest practices was written by Pott, Delphine M.;de Abreu e Lima, Francisco;Soria, Carmen;Willmitzer, Lothar;Fernie, Alisdair R.;Nikoloski, Zoran;Osorio, Sonia;Vallarino, Jose G.. And the article was included in Food Chemistry in 2020.Product Details of 470-69-9 This article mentions the following:

The strawberry fruit is perishable due to its high water content and soft texture, yet exhibits pleasant organoleptic and nutritional profile. Here we conducted a metabolomics-driven anal. followed by linear modeling to dissect the mol. processes in strawberry postharvest. Fruits from five cultivars were harvested and refrigerated during a ten-day period under three different atmospheres: ambient, CO2-enriched and O3-enriched. These analyses revealed that metabolites involved in, (i) organoleptic and nutritional properties; (ii) stress tolerance displayed duration and postharvest treatment-dependent levels. Ozone-enriched atm. appears to counteract postharvest neg. effects, with fruits exhibiting lower levels of fermentative metabolites when compared to fruits kept in an ambient atm. Furthermore, metabolic reconfiguration towards the synthesis of protective metabolites of those fruits can possibly confer enhanced tolerance to postharvest abiotic stresses. Finally, results from the linear modeling identified metabolites which could be used as biomarkers to assess strawberry quality during its postharvest shelf life. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Product Details of 470-69-9).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Product Details of 470-69-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Kaminska, E. et al. published their research in Molecular Pharmaceutics in 2014 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Application In Synthesis of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate

Impact of Inter- and Intramolecular Interactions on the Physical Stability of Indomethacin Dispersed in Acetylated Saccharides was written by Kaminska, E.;Adrjanowicz, K.;Tarnacka, M.;Kolodziejczyk, K.;Dulski, M.;Mapesa, E. U.;Zakowiecki, D.;Hawelek, L.;Kaczmarczyk-Sedlak, I.;Kaminski, K.. And the article was included in Molecular Pharmaceutics in 2014.Application In Synthesis of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate This article mentions the following:

Differential scanning calorimetry (DSC), broadband dielec. (BDS), and Fourier transform IR (FTIR) spectroscopies as well as theor. computations were applied to investigate inter- and intramol. interactions between the active pharmaceutical ingredient (API) indomethacin (IMC) and a series of acetylated saccharides. It was found that solid dispersions formed by modified glucose and IMC are the least phys. stable of all studied samples. Dielec. measurements showed that this finding is related to neither the global nor local mobility, as the two were fairly similar. On the other hand, combined studies with the use of d. functional theory (DFT) and FTIR methods indicated that, in contrast to acetylated glucose, modified disaccharides (maltose and sucrose) interact strongly with indomethacin. As a result, internal H-bonds between IMC mols. become very weak or are eventually broken. Simultaneously, strong H-bonds between the matrix and API are formed. This observation was used to explain the phys. stability of the investigated solid dispersions. Finally, solubility measurements revealed that the solubility of IMC can be enhanced by the use of acetylated carbohydrates, although the observed improvement is marginal due to strong interactions. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Application In Synthesis of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Application In Synthesis of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Minecka, A. et al. published their research in Journal of Physical Chemistry B in 2020 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.HPLC of Formula: 126-14-7

Influence of the Internal Structure and Intermolecular Interactions on the Correlation between Structural (α) and Secondary (β-JG) Relaxation below the Glass Transition Temperature in Neat Probucol and Its Binary Mixtures with Modified Saccharides was written by Minecka, A.;Tarnacka, M.;Jurkiewicz, K.;Hachula, B.;Kaminski, K.;Paluch, M.;Kaminska, E.. And the article was included in Journal of Physical Chemistry B in 2020.HPLC of Formula: 126-14-7 This article mentions the following:

Broadband dielec. spectroscopy (BDS) has been used to study the mol. dynamics and aging process in neat probucol (PRO) as well as its binary mixtures with selected acetylated saccharides. In particular, we applied the Casalini and Roland approach to determine structural relaxation times in the glassy state of the examined systems (so-called isostructural times, τiso). Next, using the calculated τiso, primitive relaxation times of the coupling model were obtained and compared to the exptl. secondary β (Johari-Goldstein (JG) type) relaxation times. Interestingly, it turned out that there is a correlation between the β-JG and the structural (α)-relaxation processes below the glass transition temperature (T < Tg) in each investigated sample. This is a new observation compared to previous studies demonstrating that such a relationship exists only in the supercooled liquid state of neat PRO. Moreover, it was revealed that the stretching parameters obtained from the aging procedure are very close to the ones determined by fitting the dielec. data above the Tg with the use of the Kohlrausch-Williams-Watts function, indicating that the aging process is governed by the α-relaxation. Complementary Fourier transform IR and X-ray diffraction measurements allowed us to find a possible reason for these findings. It was demonstrated that although there are very weak intermol. interactions between PRO and modified saccharides, the intra- and intermol. structure of PRO is practically unaffected by the presence of modified saccharides. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7HPLC of Formula: 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.HPLC of Formula: 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem