Ramachandran, Jyothi P. et al. published their research in Journal of CO2 Utilization in 2021 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Reference of 126-14-7

Green processing: CO2-induced glassification of sucrose octaacetate and its implications in the spontaneous release of drug from drug-excipient composites was written by Ramachandran, Jyothi P.;Kottammal, Ajila P.;Antony, Anu;Ramakrishnan, Resmi M.;Wallen, Scott L.;Raveendran, Poovathinthodiyil. And the article was included in Journal of CO2 Utilization in 2021.Reference of 126-14-7 This article mentions the following:

Liquid and supercritical (s.c.) CO2 offer tremendous advantages as a greener and safer solvent platform for the pharmaceutical industry. Sugar acetates form a class of inexpensive, carbonyl-based, CO2-philes that exhibits remarkably high solubility in liquid and scCO2. In this work, we combine the use of the green CO2 solvent platform and a class of renewable, FDA-approved excipient systems, viz., α-D-glucose pentaacetate (AGLU) and sucrose octaacetate (SOA), to disperse two active pharmaceutical ingredients, viz., aspirin and paracetamol. When treated with CO2, these excipients undergo profound structural modifications in comparison to those processed using two conventional organic solvents, viz., Et acetate and acetone. Of particular interest is the glass formation of sucrose octaacetate. Spontaneous drug release from these excipient systems processed using CO2 and the conventional solvents are compared. It is observed that the drug release from the CO2-processed SOA/drug system is an order of magnitude slower as compared to those processed using conventional solvent systems studied, plausibly due to the immobilization of the drug inside the glassy SOA matrix. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Reference of 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Reference of 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem