Glycosylation of Pyrrolo[2,3-d]pyrimidines with 1-O-Acetyl-2,3,5-tri-O-benzoyl-β-
Glycosylation of non-functionalized 6-chloro-7-deazapurine with com. available 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose (45% yield) followed by amination and deprotection gave tubercidin in only two steps. Similar conditions applied for the synthesis of 7-deazaguanosine employing pivaloylated 2-amino-6-chloro-7-deazapurine gave 18% glycosylation yield. Less bulky isobutyryl or acetyl protected amino group directed the glycosylation toward the exocyclic amino substituent. 7-Halogenated intermediates were glycosylated followed by dehalogenation to overcome the low glycosylation yield in the synthesis of 7-deazaguanosine. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Application of 24386-93-4).
(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Application of 24386-93-4
Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem