Abbreviated Profile of Drugs (APOD): modeling drug safety profiles to prioritize investigational COVID-19 treatments was written by Hiremath, Chaitanya N.. And the article was included in Heliyon in 2021.Reference of 2492423-29-5 The following contents are mentioned in the article:
Safe and effective oral formulation of a drug that is easy to store, transport, and administer, is imperative to reach the masses including those without adequate facilities and resources, in order to combat globally transmitted coronavirus disease 2019 (COVID-19). In this decision analytic modeling study, the safety of investigational COVID-19 drugs in clin. trials was assessed using the Abbreviated Profile of Drugs (APOD) methodol. The method was extensively tested for various unbiased datasets based on different criteria such as drugs recalled worldwide for failing to meet safety standards, organ-specific toxicities, cytochrome P 450 inhibitors, and Food and Drug Administration (FDA) approved drugs with remarkable successes. Exptl. validation of the predictions made by APOD were demonstrated by comparison with a progression of multiparametric optimization of a series of cancer drugs that led to a potent drug (GDC-0941) which went into the clin. development. The drugs were classified into three categories of safety profiles: strong, moderate and weak. A total of 3556 drugs available in public databases were examined According to the results, drugs with strong safety profiles included molnupiravir (EIDD-2801), moderate safety profiles included dexamethasone, and weak safety profiles included lopinavir. In this anal., the physicochem.-pharmacokinetic APOD fingerprint was associated with the drug safety profile of withdrawn, approved, as well as drugs in clin. trials and the APOD method facilitated decision-making and prioritization of the investigational treatments. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Reference of 2492423-29-5).
((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Reference of 2492423-29-5
Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem