Hau, Raymond K. et al. published their research in Clinical and Translational Science in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Formula: C13H19N3O7

PF -07321332 (Nirmatrelvir) does not interact with human ENT1 or ENT2 : Implications for COVID -19 patients was written by Hau, Raymond K.;Wright, Stephen H.;Cherrington, Nathan J.. And the article was included in Clinical and Translational Science in 2022.Formula: C13H19N3O7 The following contents are mentioned in the article:

The ongoing pandemic of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) and subsequently, coronavirus disease 2019 (COVID-19), has led to the deaths of over 6.1 million people and sparked a greater interest in virol. to expedite the development process for antivirals. The US Food and Drug Administration (FDA) granted emergency use authorization for three antivirals: remdesivir, molnupiravir, and nirmatrelvir. Remdesivir and molnupiravir are nucleoside analogs that undergo biotransformation to form active metabolites that incorporate into new viral RNA to stall replication. Unlike remdesivir or molnupiravir, nirmatrelvir is a protease inhibitor that covalently binds to the SARS-CoV-2 3C-like protease to interrupt the viral replication cycle. A recent study identified that remdesivir and the active metabolite of molnupiravir, EIDD-1931, are substrates of equilibrative nucleoside transporters 1 and 2 (ENT1 and 2). Despite the ubiquitous expression of the ENTs, the preclin. efficacy of remdesivir and molnupiravir is not reflected in wide-scale SARS-CoV-2 clin. trials. Interestingly, downregulation of ENT1 and ENT2 expression has been shown in lung epithelial and endothelial cells in response to hypoxia and acute lung injury, although it has not been directly studied in patients with COVID-19. It is possible that the poor efficacy of remdesivir and molnupiravir in these patients may be partially attributed to the repression of ENTs in the lungs, but further studies are warranted. This study investigated the interaction between nirmatrelvir and the ENTs and found that it was a poor inhibitor of ENT-mediated [3H]uridine uptake at 300 μM. Unlike for remdesivir or EIDD-1931, ENT activity is unlikely to be a factor for nirmatrelvir disposition in humans; however, whether this contributes to the similar in vitro and clin. efficacy will require further mechanistic studies. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Formula: C13H19N3O7).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Formula: C13H19N3O7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem