Astrocytic adenosine kinase regulates basal synaptic adenosine levels and seizure activity but not activity-dependent adenosine release in the hippocampus was written by Etherington, Lori-An V.;Patterson, Graham E.;Meechan, Louise;Boison, Detlev;Irving, Andrew J.;Dale, Nicholas;Frenguelli, Bruno G.. And the article was included in Neuropharmacology in 2009.Category: tetrahydrofurans The following contents are mentioned in the article:
Adenosine is an endogenous inhibitor of excitatory synaptic transmission with potent anticonvulsant properties in the mammalian brain. Given adenosine’s important role in modulating synaptic transmission, several mechanisms exist to regulate its extracellular availability. One of these is the intracellular enzyme adenosine kinase (ADK), which phosphorylates adenosine to AMP. We have investigated the role that ADK plays in regulating the presence and effects of extracellular adenosine in area CA1 of rat hippocampal slices. Inhibition of ADK activity with 5′-iodotubercidin (IODO; 5 μM) raised extracellular adenosine, as measured with adenosine biosensors, and potently inhibited field excitatory post-synaptic potentials (fEPSPs) in an adenosine A1R-dependent manner. In nominally Mg2+-free aCSF, which facilitated the induction of elec.-evoked epileptiform activity, adenosine biosensor recordings revealed that seizures were accompanied by the transient release of adenosine. Under these conditions, IODO also inhibited the fEPSP and greatly suppressed epileptiform activity evoked by brief, high-frequency stimulation. During spontaneous seizures evoked by the A1R antagonist CPT, adenosine release was unaffected by IODO. This suggests that ADK activity does not limit activity-dependent adenosine release. On the basis of strong ADK immunoreactivity in GFAP-pos. cells, astrocytes are likely to play a key role in regulating basal adenosine levels. It is this action of ADK on the basal adenosine tone that is permissive to seizure activity, and, by extension, other forms of activity-dependent neuronal activity such as synaptic plasticity. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Category: tetrahydrofurans).
(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Category: tetrahydrofurans
Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem