Campas, Clara et al. published their research in Blood in 2003 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Recommanded Product: 24386-93-4

Acadesine activates AMPK and induces apoptosis in B-cell chronic lymphocytic leukemia cells but not in T lymphocytes was written by Campas, Clara;Lopez, Jose Manuel;Santidrian, Antonio F.;Barragan, Montserrat;Bellosillo, Beatriz;Colomer, Dolors;Gil, Joan. And the article was included in Blood in 2003.Recommanded Product: 24386-93-4 The following contents are mentioned in the article:

Acadesine, 5-aminoimidazole-4-carboxamide (AICA) riboside, induced apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells in all samples tested (n = 70). The half-maximal effective concentration (EC50) for B-CLL cells was 380 ± 60 μM (n = 5). The caspase inhibitor Z-VAD.fmk completely blocked acadesine-induced apoptosis, which involved the activation of caspase-3, -8, and -9 and cytochrome C release. Incubation of B-CLL cells with acadesine induced the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), indicating that it is activated by acadesine. Nitrobenzylthioinosine (NBTI), a nucleoside transport inhibitor, 5-iodotubercidin, an inhibitor of adenosine kinase, and adenosine completely inhibited acadesine-induced apoptosis and AMPK phosphorylation, demonstrating that incorporation of acadesine into the cell and its subsequent phosphorylation to AICA ribotide (ZMP) are necessary to induce apoptosis. Inhibitors of protein kinase A and mitogen-activated protein kinases did not protect from acadesine-induced apoptosis in B-CLL cells. Moreover, acadesine had no effect on p53 levels or phosphorylation, suggesting a p53-independent mechanism in apoptosis triggering. Normal B lymphocytes were as sensitive as B-CLL cells to acadesine-induced apoptosis. However, T cells from patients with B-CLL were only slightly affected by acadesine at doses up to 4 mM. AMPK phosphorylation did not occur in T cells treated with acadesine. Intracellular levels of ZMP were higher in B-CLL cells than in T cells when both were treated with 0.5 mM acadesine, suggesting that ZMP accumulation is necessary to activate AMPK and induce apoptosis. These results suggest a new pathway involving AMPK in the control of apoptosis in B-CLL cells and raise the possibility of using acadesine in B-CLL treatment. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Recommanded Product: 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Recommanded Product: 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem