Tolborg, Soren published the artcileShape-selective Valorization of Biomass-derived Glycolaldehyde using Tin-containing Zeolites, Safety of 3-Hydroxydihydrofuran-2(3H)-one, the publication is ChemSusChem (2016), 9(21), 3054-3061, database is CAplus and MEDLINE.
A highly selective self-condensation of glycolaldehyde to different C4 mols. has been achieved using Lewis acidic stannosilicate catalysts in water at moderate temperatures (40-100 °C). The medium-sized zeolite pores (10-membered ring framework) in Sn-MFI facilitate the formation of tetrose sugars while hindering consecutive aldol reactions leading to hexose sugars. High yields of tetrose sugars (74 %) with minor amounts of vinyl glycolic acid (VGA), an α-hydroxyacid, are obtained using Sn-MFI with selectivities towards C4 products reaching 97 %. Tin catalysts having large pores or no pore structure (Sn-Beta, Sn-MCM-41, Sn-SBA-15, tin chloride) led to lower selectivities for C4 sugars due to formation of hexose sugars. In the case of Sn-Beta, VGA is the main product (30 %), illustrating differences in selectivity of the Sn sites in the different frameworks. Under optimized conditions, GA can undergo further conversion, leading to yields of up to 44 % of VGA using Sn-MFI in water. The use of Sn-MFI offers multiple possibilities for valorization of biomass-derived GA in water under mild conditions selectively producing C4 mols.
ChemSusChem published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C5H6BNO2, Safety of 3-Hydroxydihydrofuran-2(3H)-one.
Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem