Gu, Qun et al. published their research in Journal of Chromatography A in 2011 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

Evaluation of automated sample preparation, retention time locked gas chromatography-mass spectrometry and data analysis methods for the metabolomic study of Arabidopsis species was written by Gu, Qun; David, Frank; Lynen, Frederic; Rumpel, Klaus; Dugardeyn, Jasper; Van Der Straeten, Dominique; Xu, Guowang; Sandra, Pat. And the article was included in Journal of Chromatography A on May 27,2011.Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

In this paper, automated sample preparation, retention time locked gas chromatog.-mass spectrometry (GC-MS) and data anal. methods for the metabolomics study were evaluated. A miniaturized and automated derivatization method using sequential oximation and silylation was applied to a polar extract of 4 types (2 types × 2 ages) of Arabidopsis thaliana, a popular model organism often used in plant sciences and genetics. Automation of the derivatization process offers excellent repeatability, and the time between sample preparation and anal. was short and constant, reducing artifact formation. Retention time locked (RTL) gas chromatog.-mass spectrometry was used, resulting in reproducible retention times and GC-MS profiles. Two approaches were used for data anal. XCMS followed by principal component anal. (approach 1) and AMDIS deconvolution combined with a com. available program (Mass Profiler Professional) followed by principal component anal. (approach 2) were compared. Several features that were up- or down-regulated in the different types were detected. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Abel-Santos, Ernesto et al. published their research in New Journal of Chemistry in 2007 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Formula: C10H12N4O4 

Differential nucleoside recognition during Bacillus cereus 569 (ATCC 10876) spore germination was written by Abel-Santos, Ernesto; Dodatko, Tetyana. And the article was included in New Journal of Chemistry on May 31,2007.Formula: C10H12N4O4  The following contents are mentioned in the article:

The authors have tested a series of inosine analogs for their effect on germinating B. cereus 569 spores. The results showed that although inosine (hypoxanthine nucleoside) causes spore germination by itself, the kinetic pathway exhibited complex and strongly cooperative character. Contrary to inosine’s germinating effect, the purine pathway degradation products xanthine, xanthosine, uric acid, hypoxanthine, ribose, or ribose plus hypoxanthine failed to activate spore germination. Furthermore, even small modifications of inosine’s nucleobase or sugar moieties have deleterious effects on germination efficiency. In contrast to previous work with the B. cereus 3711 strain, incubation of B. cereus 569 spores with adenosine (6-aminopurine riboside) did not trigger germination, but prevented inosine-mediated germination. The inhibitory effect was lost if adenosine was substituted with adenine alone, or ribose plus adenine. Although adenosine is able to block inosine-mediated germination, it acts as a co-germinant in the presence of alanine. Nucleosides that have substitutions in the purine base are not able to trigger germination by themselves, but can act as co-germinants in the presence of sub-germinant concentrations of alanine. In contrast, modifications of the sugar moiety precluded germination activity under all conditions tested. The data suggests that only inosine can activate germination by itself. However, when alanine is present as a co-germinant, different germination receptors are activated that recognize a larger subset of nucleoside structures. This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0Formula: C10H12N4O4 ).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Formula: C10H12N4O4 

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0

Li, Yan et al. published their research in Plant Physiology and Biochemistry (Issy-les-Moulineaux, France) in 2022 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Quality Control of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

Physiological defense and metabolic strategy of Pistia stratiotes in response to zinc-cadmium co-pollution was written by Li, Yan; Xin, Jianpan; Tian, Runan. And the article was included in Plant Physiology and Biochemistry (Issy-les-Moulineaux, France) on May 1,2022.Quality Control of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

Pistia stratiotes is a cadmium (Cd) hyperaccumulating plant with strong bioaccumulation and translocation capacity for Cd. A hydroponic experiment was used to evaluate the combined effect of Zinc (Zn) and Cd at different concentrations on leaf growth and metabolism of P. stratiotes. This study revealed the physiol. defense and metabolic strategy of responses to Zn-Cd co-pollution. With the Zn50Cd1, Zn50Cd10, Zn100Cd1, and Zn100Cd10 treatments for 9 d, the relative crown diameter, relative leave number, and ramet number of the plant had no significant difference with the control. Under the compound treatments containing Zn50Cd50 and Zn100Cd50, the activity of the glyoxalase system and amino acid metabolism in the leaves were inhibited. The leaf photosynthetic apparatus increased heat dissipation to reduce the damage to the photosystem II (PS II) reaction center caused by excess excitation energy under Zn-Cd stress. This safeguarded the balance between the absorption and utilization of light energy. Compared to the control, the Zn and Cd co-pollution for 9 d had no effect on the reduced glutathione (GSH) and oxidized glutathione (GSSG) contents. There was no effect on the dehydroascorbate reductase (DHAR) and glutathione reductase (GR) activities, but there was increased ascorbate peroxidase (APX) activity and oxidized ascorbic acid (DHA) content. These increased the antioxidant capacity of the ascorbate-glutathione (AsA-GSH) cycle. The treated plants also had increased levels of carnosol and substances related to lipid metabolism including 9, 10-Dihydroxystearate, Prostaglandin G2, Sphingosine, and 13-L-Hydroperoxylinoleic acid, maintaining the cell stability and resistance to the Zn-Cd stress. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Quality Control of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Quality Control of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4