Conformation-dependent restraints for polynucleotides: the sugar moiety was written by Kowiel, Marcin; Brzezinski, Dariusz; Gilski, Miroslaw; Jaskolski, Mariusz. And the article was included in Nucleic Acids Research on January 24,2020.Related Products of 550-33-4 The following contents are mentioned in the article:
Stereochem. restraints are commonly used to aid the refinement of macromol. structures obtained by exptl. methods at lower resolution The standard restraint library for nucleic acids has not been updated for over two decades and needs revision. In this paper, geometrical restraints for nucleic acids sugars are derived using information from high-resolution crystal structures in the Cambridge Structural Database. In contrast to the existing restraints, this work shows that different parts of the sugar moiety form groups of covalent geometry dependent on various chem. and conformational factors, such as the type of ribose or the attached nucleobase, and ring puckering or rotamers of the glycosidic (χ) or side-chain (γ) torsion angles. Moreover, the geometry of the glycosidic link and the endocyclic ribose bond angles are functionally dependent on χ and sugar pucker amplitude (τm), resp. The proposed restraints have been pos. validated against data from the Nucleic Acid Database, compared with an ultrahigh-resolution Z-DNA structure in the Protein Data Bank, and tested by rerefining hundreds of crystal structures in the Protein Data Bank. The conformation-dependent sugar restraints presented in this work are publicly available in REFMAC, PHENIX and SHELXL format through a dedicated RestraintLib web server with an API function. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Related Products of 550-33-4).
(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Related Products of 550-33-4
550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4 ;function of 550-33-4