A novel nucleoside rescue metabolic pathway may be responsible for therapeutic effect of orally administered cordycepin was written by Lee, Jong Bong; Radhi, Masar; Cipolla, Elena; Gandhi, Raj D.; Sarmad, Sarir; Zgair, Atheer; Kim, Tae Hwan; Feng, Wanshan; Qin, Chaolong; Adrower, Cecilia; Ortori, Catherine A.; Barrett, David A.; Kagan, Leonid; Fischer, Peter M.; de Moor, Cornelia H.; Gershkovich, Pavel. And the article was included in Scientific Reports on December 31,2019.Synthetic Route of C10H12N4O4 The following contents are mentioned in the article:
Although adenosine and its analogs have been assessed in the past as potential drug candidates due to the important role of adenosine in physiol., only little is known about their absorption following oral administration. In this work, we have studied the oral absorption and disposition pathways of cordycepin, an adenosine analog. In vitro biopharmaceutical properties and in vivo oral absorption and disposition of cordycepin were assessed in rats. Despite the fact that numerous studies showed efficacy following oral dosing of cordycepin, we found that intact cordycepin was not absorbed following oral administration to rats. However, 3′-deoxyinosine, a metabolite of cordycepin previously considered to be inactive, was absorbed into the systemic blood circulation. Further investigation was performed to study the conversion of 3′-deoxyinosine to cordycepin 5′-triphosphate in vitro using macrophage-like RAW264.7 cells. It demonstrated that cordycepin 5′-triphosphate, the active metabolite of cordycepin, can be formed not only from cordycepin, but also from 3′-deoxyinosine. The novel nucleoside rescue metabolic pathway proposed in this study could be responsible for therapeutic effects of adenosine and other analogs of adenosine following oral administration. These findings may have importance in understanding the physiol. and pathophysiol. associated with adenosine, as well as drug discovery and development utilizing adenosine analogs. This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0Synthetic Route of C10H12N4O4 ).
9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Synthetic Route of C10H12N4O4
13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0