A complementary pair of rapid molecular screening assays for RecA activities was written by Lee, Andrew M.; Wigle, Tim J.; Singleton, Scott F.. And the article was included in Analytical Biochemistry on August 15,2007.Application of 18423-43-3 The following contents are mentioned in the article:
The bacterial RecA protein has been implicated in the evolution of antibiotic resistance in pathogens, which is an escalating problem worldwide. The discovery of small mols. that can selectively modulate RecA’s activities can be exploited to tease apart its roles in the de novo development and transmission of antibiotic resistance genes. Toward the goal of discovering small-mol. ligands that can prevent either the assembly of an active RecA-DNA filament or its subsequent ATP-dependent motor activities, we report the design and initial validation of a pair of rapid and robust screening assays suitable for the identification of inhibitors of RecA activities. One assay is based on established methods for monitoring ATPase enzyme activity and the second is a novel assay for RecA-DNA filament assembly using fluorescence polarization. Taken together, the assay results reveal complementary sets of agents that can either suppress selectively only the ATP-driven motor activities of the RecA-DNA filament or prevent assembly of active RecA-DNA filaments altogether. The screening assays can be readily configured for use in future automated high-throughput screening projects to discover potent inhibitors that may be developed into novel adjuvants for antibiotic chemotherapy that moderate the development and transmission of antibiotic resistance genes and increase the antibiotic therapeutic index. This study involved multiple reactions and reactants, such as Thymidine 5′-(tetrahydrogen triphosphate) xsodium salt (cas: 18423-43-3Application of 18423-43-3).
Thymidine 5′-(tetrahydrogen triphosphate) xsodium salt (cas: 18423-43-3) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Application of 18423-43-3
18423-43-3;Thymidine 5′-(tetrahydrogen triphosphate) xsodium salt;The future of 18423-43-3;New trend of C10H14N2Na3O14P3;function of 18423-43-3