Solution structure of ligands involved in purine salvage pathway was written by Karnawat, Vishakha; Puranik, Mrinalini. And the article was included in Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy on December 5,2015.Recommanded Product: (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:
Analogs of intermediates involved in the purine salvage pathway can be exploited as potential drug mols. against enzymes of protozoan parasites. To develop such analogs we need knowledge of the solution structures, predominant tautomer at physiol. pH and protonation-state of the corresponding natural ligand. In this regard, we have employed UV resonance Raman spectroscopy (UVRR) in combination with d. functional theory (DFT) to study the solution structures of two relatively unexplored intermediates, 6-phosphoryl IMP (6-pIMP) and succinyl adenosine-5′-monophosphate (sAMP), of purine salvage pathway. These mols. are intermediates in a two step enzymic process that converts inosine-5′-monophosphate (IMP) to adenosine-5′-monophosphate (AMP). Exptl. data on the mol. structure of these ligands is lacking. We report UVRR spectra of these two ligands, obtained at an excitation wavelength of 260 nm. Using isotope induced shifts and DFT calculations we assigned observed spectra to computed normal modes. We find that sAMP exists as neutral species at physiol. pH and the predominant tautomer in solution bears proton at N10 position of purine ring. Though transient in solution, 6-pIMP is captured in the enzyme-bound form. This work provides the structural information of these ligands in solution state at physiol. pH. We further compare these structures with the structures of AMP and IMP. Despite the presence of similar purine rings in AMP and sAMP, their UVRR spectra are found to be very different. Similarly, though the purine ring in 6-pIMP resembles that of IMP, UVRR spectra of the two mols. are distinct. These differences in the vibrational spectra provide direct information on the effects of exocyclic groups on the skeletal structures of these mols. Our results identify key bands in the vibrational spectra of these ligands which may serve as markers of hydrogen bonding interactions upon binding to the active-sites of enzymes. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Recommanded Product: (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol).
(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Recommanded Product: (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol
550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4 ;function of 550-33-4