Hou, Wenpeng et al. published their research in Plant and Soil in 2021 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.HPLC of Formula: 550-33-4

Metabolomics insights into the mechanism by which Epichloe gansuensis endophyte increased Achnatherum inebrians tolerance to low nitrogen stress was written by Hou, Wenpeng; Wang, Jianfeng; Christensen, Michael J.; Liu, Jie; Zhang, Yongqiang; Liu, Yinglong; Cheng, Chen. And the article was included in Plant and Soil on June 30,2021.HPLC of Formula: 550-33-4 The following contents are mentioned in the article:

Epichloe gansuensis increases the tolerance of host plants to abiotic stress. However, little is known about the mechanism by which E. gansuensis improves grass growth under low nitrogen availability stress. Achnatherum inebrians with E. gansuensis (E+) and without E. gansuensis (E-) were treated with modified 1/2 Hoagland containing 0.01 mM (low N) or 7.5 mM N (normal level) for 18 wk. After 18 wk of treatment with N, the dry weight of E+ and E- plants were measured, and the metabolomics anal. of leaves and roots grown under two different N concentrations was conducted with GS-MS to determine differential metabolites and metabolic pathways. E+ A. inebrians had higher dry weight of leaves and roots compared to the E- A. inebrians under low N stress. E. gansuensis increased the tolerance of A. inebrians to low N stress by its capability to increase the content of organic acids (salicylic acid and 3-hydroxypropionic acid) and glucose-6-phosphate in leaves, and E. gansuensis increased the content of fatty acids (linolenic acid and oleic acid) and amino acids (glycine and 4-aminobutyric acid) in roots under low N stress. Finally, E. gansuensis reprogramed the metabolic pathway of amino acids of host grasses to adapt to the different N concentration Our results reveal the chem. mechanism by which E. gansuensis enhances the tolerance of host grasses to low N, and provide the theor. basis for utilizing E. gansuensis, improving of grasses and crops, and for developing new germplasm for low-N tolerant grasses. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4HPLC of Formula: 550-33-4).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.HPLC of Formula: 550-33-4

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4