Lauer, Matthew G’s team published research in Organic Letters in 2012-12-07 | 5455-94-7

Organic Letterspublished new progress about Acetalization. 5455-94-7 belongs to class tetrahydrofurans, and the molecular formula is C8H14O2, Name: 2,2,5,5-Tetramethyldihydrofuran-3(2H)-one.

Lauer, Matthew G.; Henderson, William H.; Awad, Amneh; Stambuli, James P. published the artcile< Palladium-Catalyzed Reactions of Enol Ethers: Access to Enals, Furans, and Dihydrofurans>, Name: 2,2,5,5-Tetramethyldihydrofuran-3(2H)-one, the main research area is palladium catalyzed oxidation alkyl enol ether enal furan hydrofuran.

The palladium-catalyzed oxidation of alkyl enol ethers to enals, which employs low loadings of a palladium catalyst, is described. The mild oxidation conditions tolerate a diverse array of functional groups, while allowing the formation of di-, tri-, and tetrasubstituted olefins. The application of this methodol. to intramol. reactions of alkyl enol ethers containing pendant alcs. provides furan and 2,5-dihydrofuran products.

Organic Letterspublished new progress about Acetalization. 5455-94-7 belongs to class tetrahydrofurans, and the molecular formula is C8H14O2, Name: 2,2,5,5-Tetramethyldihydrofuran-3(2H)-one.

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Paraja, Miguel’s team published research in Angewandte Chemie, International Edition in 2020 | 97-99-4

Angewandte Chemie, International Editionpublished new progress about Autocatalysis. 97-99-4 belongs to class tetrahydrofurans, and the molecular formula is C5H10O2, Electric Literature of 97-99-4.

Paraja, Miguel; Hao, Xiaoyu; Matile, Stefan published the artcile< Polyether Natural Product Inspired Cascade Cyclizations: Autocatalysis on π-Acidic Aromatic Surfaces>, Electric Literature of 97-99-4, the main research area is oligooxolane preparation; oligoepoxide preparation cascade ring opening cyclization autocatalysis kinetics; autocatalysis; cyclization; polyethers; synthetic methods; π interactions.

Anion-π catalysis functions by stabilizing anionic transition states on aromatic π surfaces, thus providing a new approach to mol. transformation. The delocalized nature of anion-π interactions suggests that they serve best in stabilizing long-distance charge displacements. Aiming therefore for an anionic cascade reaction that is as charismatic as the steroid cyclization is for conventional cation-π biocatalysis, reported here is the anion-π-catalyzed epoxide-opening ether cyclizations of oligomers. Only on π-acidic aromatic surfaces having a pos. quadrupole moment, such as hexafluorobenzene to naphthalenediimides, do these polyether cascade cyclizations proceed with exceptionally high autocatalysis (rate enhancements kauto/kcat >104 M-1). This distinctive characteristic adds complexity to reaction mechanisms (Goldilocks-type substrate concentration dependence, entropy-centered substrate destabilization) and opens intriguing perspectives for future developments.

Angewandte Chemie, International Editionpublished new progress about Autocatalysis. 97-99-4 belongs to class tetrahydrofurans, and the molecular formula is C5H10O2, Electric Literature of 97-99-4.

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Yuan, Bingbing’s team published research in Separation and Purification Technology in 2019-10-01 | 4415-87-6

Separation and Purification Technologypublished new progress about Anions (mono and divalent). 4415-87-6 belongs to class tetrahydrofurans, and the molecular formula is C8H4O6, Synthetic Route of 4415-87-6.

Yuan, Bingbing; Li, Pengfei; Wang, Peng; Yang, Hao; Sun, Honghong; Li, Peng; Sun, Haixiang; Niu, Q. Jason published the artcile< Novel aliphatic polyamide membrane with high mono-/divalent ion selectivity, excellent Ca2+, Mg2+ rejection, and improved antifouling properties>, Synthetic Route of 4415-87-6, the main research area is aliphatic polyamide nanofiltration membrane preparation water desalination ion rejection.

Monomer design and reconstruction is typically a preferred route to tune the inner structure and screen the performance of polyamide nanofilms for their efficiency and ease of scaling up in industrial production Herein, two kinds of novel acyl chloride monomers, 1,2,3,4-cyclobutane tetracarboxylic acid chloride (BTC) and 1,2,4,5-cyclohexanetetracarboxylic acid chloride (HTeC), have been designed and synthesized. The BTC and HTeC monomers can rapidly react with amine mol. at interface to form an aliphatic polyamide nanofilm that is denser than that of TMC based polyamide membrane. The resulting mean effective pore size of the BTC and HTeC polyamide nanofilms is 0.184 nm and 0.197 nm, which is lower than that of the TMC nanofilm at 0.238 nm. Desalination experiments revealed that the aliphatic polyamide membrane shows more than a 98% rejection rate for CaCl2, MgCl2, and MgSO4 and a water flux of 84.4 kg m-2 h-1 MPa-1 (for 2000 ppm MgSO4). Moreover, the ion selectivity of Na+/Mg2+ and Na+/Ca2+ of the BTC membrane is as high as 126 and 31.5, resp. These are much higher than those of the related TMC and com. nanofiltration membranes. Fouling experiments indicate that the flux decline rate (FDR) of the aliphatic polyamide membrane is only 38%, whereas the FDR of the full-aromatic polyamide membrane is 60%. Further investigations confirmed that surface roughness is the main factor affecting the fouling behaviors of polyamide membranes. Our results demonstrate that BTC and HTeC monomers are unique potential materials in the fabrication of nanofiltration membranes used for water treatment such as water softening and ion sieving.

Separation and Purification Technologypublished new progress about Anions (mono and divalent). 4415-87-6 belongs to class tetrahydrofurans, and the molecular formula is C8H4O6, Synthetic Route of 4415-87-6.

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Song, Yongzhi’s team published research in Polymers for Advanced Technologies in 2019 | 4415-87-6

Polymers for Advanced Technologiespublished new progress about Electrooptical instruments. 4415-87-6 belongs to class tetrahydrofurans, and the molecular formula is C8H4O6, Computed Properties of 4415-87-6.

Song, Yongzhi; Yuan, Lili; Wang, Zhiyuan; Yang, Shiyong published the artcile< Photo-aligning of polyimide layers for liquid crystals>, Computed Properties of 4415-87-6, the main research area is photoaligning polyimide layer liquid crystal display.

A series of soluble and highly transparent semi-alicyclic polyimides (PIs) with designed flexible linkages have been synthesized derived from an alicyclic aromatic dianhydride (1,2,3,4-cyclobutanetetracarboxylic dianhydride, CBDA) and various aromatic ether-bridged diamines. The semi-alicyclic PIs were evaluated as the photo-alignment layers of liquid crystal (LC) mols. in liquid crystal display (LCD). Exptl. results indicate that the photo-alignment characteristics of LC mols. induced by the photo-aligned PI layers and the electro-optical (EO) properties of the LC cell devices are closely related with PI backbone structures. The retardation of the photo-aligned PI layers is correlated with the UV absorption intensity of PI at 220 to approx. 330 nm. The higher UV absorption intensity PI has, the higher retardation and lower pre-tilt angle the photo-aligned PI layer exhibits. The defect-free and photo-aligned PI layer could result into the uniform LC texture, which is highly desired for in-plane switching (IPS) mode LCD devices. In comparison, PI layer containing trifluoromethyl moiety shows poor photo-aligning performance because of the strong electronic withdrawing effect of the fluorinated linkage.

Polymers for Advanced Technologiespublished new progress about Electrooptical instruments. 4415-87-6 belongs to class tetrahydrofurans, and the molecular formula is C8H4O6, Computed Properties of 4415-87-6.

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Silva, Wesley R’s team published research in Molecular Catalysis in 2021-03-31 | 97-99-4

Molecular Catalysispublished new progress about Carbon nanotubes. 97-99-4 belongs to class tetrahydrofurans, and the molecular formula is C5H10O2, Reference of 97-99-4.

Silva, Wesley R.; Matsubara, Elaine Y.; Rosolen, Jose M.; Donate, Paulo M.; Gunnella, Roberto published the artcile< Pd catalysts supported on different hydrophilic or hydrophobic carbonaceous substrate for furfural and 5-(hydroxymethyl)furfural hydrogenation in water>, Reference of 97-99-4, the main research area is palladium catalyst carbonaceous substrate furfural hydroxymethylfurfural hydrogenation water.

We hydrogenated furfural and 5-(hydroxymethyl)furfural (HMF) in water in a reaction catalyzed by Pd nanoparticles on carbonaceous materials with different morphol. and hydrophobic degree. The different Pd catalysts were prepared by dipping the carbonaceous material into a Pd0 micro-emulsion. The catalyst support affected the catalytic hydrogenation of furfural and HMF. By using micrometric active carbon (AC) combined with cup-stacked carbon nanotubes (CSCNTs) and Pd0/2+ nanoparticles (Pd), we obtained a micro/nanostructured material designated Pd/CSCNT-AC, which performed better than the other carbonaceous materials containing similar Pd nanoparticle loading. Pd/CSCNT-AC produced tetrahydrofurfuryl alc. from furfural with excellent selectivity (>99%). Unlike Pd on hybrophobic spheroid graphite or hydrophilic AC, Pd/CSCNT-AC hydrogenated both the C=O and C=C double bonds of furfural and catalyzed HMF hydrogenation at the C=O double bond more selectively: between 85% and 99% selectivity toward 2,5-dihydroxymethylfuran. We also investigated how temperature, hydrogen pressure, and reaction time affected HMF hydrogenation in water. Finally, Pd/CSCNT-AC was recycled several times without significant catalytic activity loss.

Molecular Catalysispublished new progress about Carbon nanotubes. 97-99-4 belongs to class tetrahydrofurans, and the molecular formula is C5H10O2, Reference of 97-99-4.

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Zhang, Qingfei’s team published research in Journal of Materials Chemistry B: Materials for Biology and Medicine in 2020 | 4415-87-6

Journal of Materials Chemistry B: Materials for Biology and Medicinepublished new progress about Antitumor agents. 4415-87-6 belongs to class tetrahydrofurans, and the molecular formula is C8H4O6, COA of Formula: C8H4O6.

Zhang, Qingfei; Kuang, Gaizhen; Zhou, Dongfang; Qi, Yanxin; Wang, Mingzhe; Li, Xiaoyuan; Huang, Yubin published the artcile< Photoactivated polyprodrug nanoparticles for effective light-controlled Pt(IV) and siRNA codelivery to achieve synergistic cancer therapy>, COA of Formula: C8H4O6, the main research area is photoactivated platinum polyprodrug nanoparticle Bcl2 siRNA synergy cancer therapy.

Endo/lysosomal escape and the subsequent controllable/precise release of drugs and genes are key challenges for efficient synergistic cancer therapy. Herein, we report a photoactivated polyprodrug nanoparticle system (PPNPsiRNA) centered on effective light-controlled codelivery of Pt(IV) prodrug and siRNA for synergistic cancer therapy. Under green-light irradiation, PPNPsiRNA can sustainedly generate oxygen-independent azidyl radicals to facilitate endo/lysosomal escape through the photochem. internalization (PCI) mechanism. Besides, concurrent Pt(II) release and siRNA unpacking could occur in a controllable manner after the decomposition of Pt(IV), main chain shattering of photoactivated polyprodrug and the PPNPsiRNA disassocn. Based on these innovative features, excellent synergistic therapeutic efficacy of chemo- and RNAi therapies of PPNPsiBcl-2 could be achieved on ovarian cancer cells under light irradiation The facile synthesized and prepared photoactivatable polyprodrug nanoparticle system provides a new strategy for effective gene/drug codelivery, where controllable endo/lysosomal escape and the subsequent drug/gene release/unpacking play vital roles, which could be adopted as a versatile codelivery nanoplatform for the treatment of various cancers.

Journal of Materials Chemistry B: Materials for Biology and Medicinepublished new progress about Antitumor agents. 4415-87-6 belongs to class tetrahydrofurans, and the molecular formula is C8H4O6, COA of Formula: C8H4O6.

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Bommana, Sankhya’s team published research in Microbiology Spectrum in 2022-06-30 | 58-97-9

Microbiology Spectrumpublished new progress about Actinobacteria. 58-97-9 belongs to class tetrahydrofurans, and the molecular formula is C9H13N2O9P, Safety of ((2R,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl dihydrogen phosphate.

Bommana, Sankhya; Richards, Gracie; Kama, Mike; Kodimerla, Reshma; Jijakli, Kenan; Read, Timothy D.; Dean, Deborah published the artcile< Metagenomic shotgun sequencing of endocervical, vaginal, and rectal samples among Fijian women with and without Chlamydia trachomatis reveals disparate microbial populations and function across anatomic sites: a pilot study>, Safety of ((2R,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl dihydrogen phosphate, the main research area is Chlamydia metagenomics shotgun sequencing endocervix vagina rectum anatomy; Chlamydia trachomatis; endocervical microbiome; metabolomics; metagenomic shotgun sequencing; pathogenesis; rectal microbiome; sexually transmitted infections; vaginal microbiome.

Chlamydia trachomatis is a sexually transmitted pathogen and a global public health concern. Little is known about the microbial composition and function across endocervical, vaginal, and rectal microbiomes in the context of C. trachomatis infection. We evaluated the microbiomes of 10 age-matched high-risk Fijian women with and without C. trachomatis using metagenomic shotgun sequencing (MSS). Lactobacillus iners and Lactobacillus crispatus dominated the vagina and endocervix of uninfected women. Species often found in higher relative abundance in bacterial vaginosis (BV) – Mageeibacillus indolicus, Prevotella spp., Sneathia spp., Gardnerella vaginalis, and Veillonellaceae spp. – were dominant in C. trachomatis-infected women. This combination of BV pathogens was unique to Pacific Islanders compared to previously studied groups. The C. trachomatis-infected endocervix had a higher diversity of microbiota and microbial profiles that were somewhat different from those of the vagina. However, community state type III (CST-III) and CST-IV predominated, reflecting pathogenic microbiota regardless of C. trachomatis infection status. Rectal microbiomes were dominated by Prevotella and Bacteroides, although four women had unique microbiomes with Gardnerella, Akkermansia, Bifidobacterium, and Brachyspira. A high level of microbial similarity across microbiomes in two C. trachomatis-infected women suggested intragenitorectal transmission. A number of metabolic pathways in the endocervix, driven by BV pathogens and C. trachomatis to meet nutritional requirements for survival/growth, 5-fold higher than that in the vagina indicated that endocervical microbial functions are likely more diverse and complex than those in the vagina. Our novel findings provide the impetus for larger prospective studies to interrogate microbial/microbiome interactions that promote C. trachomatis infection and better define the unique genitorectal microbiomes of Pacific Islanders.

Microbiology Spectrumpublished new progress about Actinobacteria. 58-97-9 belongs to class tetrahydrofurans, and the molecular formula is C9H13N2O9P, Safety of ((2R,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl dihydrogen phosphate.

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Mironenko, Roman M’s team published research in Catalysis Today in 2020-11-01 | 97-99-4

Catalysis Todaypublished new progress about Carbon nanofibers Role: CAT (Catalyst Use), NAN (Nanomaterial), PEP (Physical, Engineering or Chemical Process), PRP (Properties), TEM (Technical or Engineered Material Use), USES (Uses), PROC (Process). 97-99-4 belongs to class tetrahydrofurans, and the molecular formula is C5H10O2, Application In Synthesis of 97-99-4.

Mironenko, Roman M.; Belskaya, Olga B.; Likholobov, Vladimir A. published the artcile< Approaches to the synthesis of Pd/C catalysts with controllable activity and selectivity in hydrogenation reactions>, Application In Synthesis of 97-99-4, the main research area is review palladium carbon hydrogenation catalyst.

A review. C-supported Pd catalysts are widely used for hydrogenation of various organic compounds in the fine chem. industry. The nanoscale geometry and electronic structure of supported Pd nanoparticles play a crucial role in providing the necessary catalytic properties. To improve catalytic activity and selectivity of Pd nanoparticles, it is possible to fine tune their intrinsic properties (e.g., size and oxidation state) by controlling the chem. transformations at different stages of catalyst preparation Recent years have seen considerable advancement in developing new catalyst preparation techniques as well as in understanding the mechanism of active site formation. This review summarizes some of the existing approaches to regulating the catalytic properties of C-supported Pd by variation of the C support, the composition of Pd precursor and its reduction conditions, as well as the addition of a 2nd active metal. The data presented may be useful for researchers developing efficient Pd/C catalysts for hydrogenation of polyfunctional organic compounds

Catalysis Todaypublished new progress about Carbon nanofibers Role: CAT (Catalyst Use), NAN (Nanomaterial), PEP (Physical, Engineering or Chemical Process), PRP (Properties), TEM (Technical or Engineered Material Use), USES (Uses), PROC (Process). 97-99-4 belongs to class tetrahydrofurans, and the molecular formula is C5H10O2, Application In Synthesis of 97-99-4.

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Xue, Ying’s team published research in Molecules in 2019 | 58-97-9

Moleculespublished new progress about Nucleic acids Role: THU (Therapeutic Use), BIOL (Biological Study), USES (Uses). 58-97-9 belongs to class tetrahydrofurans, and the molecular formula is C9H13N2O9P, Product Details of C9H13N2O9P.

Xue, Ying; Jin, Wei; Xu, Xian-Shun; Yong, Li; Hu, Bin; Xiong, Jing; Hu, Xue-Mei; Qing, Lin-Sen; Xie, Jing published the artcile< Quality evaluation of Tricholoma matsutake based on the nucleic acid compounds by UPLC-TOF/MS and UPLC-QqQ/MS>, Product Details of C9H13N2O9P, the main research area is Tricholoma nucleic acid UPLC TOF MS Southwest China; Tricholoma matsutake; UPLC-QqQ/MS; UPLC-TOF/MS; nucleic acid compound; quality evaluation.

So far, there has been no quality evaluation of Tricholoma matsutake. Nucleic acid compounds are a kind of functional ingredient in T. matsutake that is beneficial to human health. In this study, a UPLC-TOF/MS method was first used to scan and identify the potential nucleic acid compounds in T. matsutake. Based on the calculation of the mol. formula and subsequent confirmation by authentic standards, 15 nucleic acid compounds were unambiguously identified: adenosine, cytidine, guanosine, inosine, thymidine, uridine, xanthosine dehydrate, 2′- deoxyadenosine, 2′-deoxycytidine, 2′-deoxyguanosine, 2′-deoxyuridine, adenosine 5′- monophosphate, CMP, GMP, and uridine 5′- monophosphate. Then, a UPLC-QqQ/MS method was developed for the subsequent quant. anal. After validating the limits of quantification, detection, precision, repeatability, and recovery through a calibration curve, the content of 15 nucleic acid compounds was determined by the proposed UPLC-QqQ/MS method in 80 T. matsutake samples collected from different regions in Sichuan province, Southwest China. After the statistical anal., we suggest that the total content of nucleic acid compounds in the qualified T. matsutake should be higher than 24.49 mg/100 g. The results indicated that the combined use of UPLC-TOF/MS and UPLC-QqQ/MS is efficient for fast identification and determination of nucleic acid compounds to comprehensively evaluate the quality of T. matsutake.

Moleculespublished new progress about Nucleic acids Role: THU (Therapeutic Use), BIOL (Biological Study), USES (Uses). 58-97-9 belongs to class tetrahydrofurans, and the molecular formula is C9H13N2O9P, Product Details of C9H13N2O9P.

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Cocq, Aurelien’s team published research in ChemCatChem in 2020-02-15 | 97-99-4

ChemCatChempublished new progress about Alcohols Role: SPN (Synthetic Preparation), PREP (Preparation). 97-99-4 belongs to class tetrahydrofurans, and the molecular formula is C5H10O2, Name: (Tetrahydrofuran-2-yl)methanol.

Cocq, Aurelien; Leger, Bastien; Noel, Sebastien; Bricout, Herve; Djedaini-Pilard, Florence; Tilloy, Sebastien; Monflier, Eric published the artcile< Anionic Amphiphilic Cyclodextrins Bearing Oleic Grafts for the Stabilization of Ruthenium Nanoparticles Efficient in Aqueous Catalytic Hydrogenation>, Name: (Tetrahydrofuran-2-yl)methanol, the main research area is oleic succinyl beta cyclodextrin ruthenium nanoparticle catalyst preparation; petrosource biosource unsaturated compound benzene furfural hydrogenation ruthenium catalyst.

Oleic succinyl β-cyclodextrin was proved to be efficient for the stabilization of ruthenium nanoparticles (NPs) in aqueous medium. The catalytic activity of these NPs was evaluated in the aqueous hydrogenation of petrosourced and biosourced unsaturated compounds such as benzene and furfural derivatives The catalytic system can be easily recycled and reused up to nine runs without any loss of activity and selectivity, demonstrating its robustness.

ChemCatChempublished new progress about Alcohols Role: SPN (Synthetic Preparation), PREP (Preparation). 97-99-4 belongs to class tetrahydrofurans, and the molecular formula is C5H10O2, Name: (Tetrahydrofuran-2-yl)methanol.

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem