Alqahtani, Yahya S.’s team published research in Indian Journal of Heterocyclic Chemistry in 2021 | CAS: 696-59-3

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. When aromatic ethers are exposed to halogen in the presence or absence of a catalyst, they undergo halogenation, such as bromination.Safety of 2,5-Dimethoxytetrahydrofuran

Alqahtani, Yahya S.; Kumar, S. R. Prem; Pavitra, H.; Joshi, Shrinivas D. published an article in 2021. The article was titled 《Synthesis, computational docking, and antimycobacterial study of novel N’-phenyl-4-pyrrol-1-yl-benzenesulfonamide derivatives》, and you may find the article in Indian Journal of Heterocyclic Chemistry.Safety of 2,5-Dimethoxytetrahydrofuran The information in the text is summarized as follows:

Fresh sequences of pyrrole linked N’-phenyl-4-pyrrolyl-benzenesulfonamide derivatives were synthesized by different synthetic methods. Synthesis of the N’-phenyl-4-(1H-pyrrol-1-yl) benzenesulfonamides/4-(2,5-dimethyl-1H-pyrrol-1-yl)-N’-phenylbenzenesulfonamides was achieved by refluxing 2,5-dimethoxytetrahydrofuran/hexane 2,5-dione sep. in presence of acetic acid. Further, synthesis of N-(4-(N’-phenylsulfamoyl)phenyl)-4-(1H-pyrrol-1-yl)benzamides/4-(2,5-dimethyl-1H-pyrrol-1-yl)-N-(4-(N’-phenylsulfamoyl)phenyl)benzamides was achieved by cold stirring of 4-(1H-pyrrol-1-yl)benzoic acid/4-(2,5-dimethyl-1H-pyrrol-1-yl)benzoic acid correspondingly in the presence of 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate, N’,N’-diisopropylethylamine, and DMF. In vitro anti-tubercular study of afresh compounds has shown good min. inhibitory concentration values (0.4-12.5μg/mL) counter to Mycobacterium tuberculosis H37Rv, while the corresponding study of reported mols. for antibacterial activity disclosed considerable inhibition values (0.4-25μg/mL) counter to Escherichia coli (Gram – ve) than Staphylococcus aureus (Gram + ve). In addition to this study using 2,5-Dimethoxytetrahydrofuran, there are many other studies that have used 2,5-Dimethoxytetrahydrofuran(cas: 696-59-3Safety of 2,5-Dimethoxytetrahydrofuran) was used in this study.

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. When aromatic ethers are exposed to halogen in the presence or absence of a catalyst, they undergo halogenation, such as bromination.Safety of 2,5-Dimethoxytetrahydrofuran

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Al-Waleedy, Safiyyah A. H.’s team published research in Journal of Heterocyclic Chemistry in 2020 | CAS: 696-59-3

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. When aromatic ethers are exposed to halogen in the presence or absence of a catalyst, they undergo halogenation, such as bromination.Safety of 2,5-Dimethoxytetrahydrofuran

Safety of 2,5-DimethoxytetrahydrofuranIn 2020 ,《Synthesis and characterization of some new pyridines, thieno[2,3-b] pyridines and pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidine-4(3H)-ones bearing styryl moiety》 appeared in Journal of Heterocyclic Chemistry. The author of the article were Al-Waleedy, Safiyyah A. H.; Bakhite, Etify A.; Abbady, Mohamed S.; Abdu-Allah, Hajjaj H. M.. The article conveys some information:

Reaction of compound 3-cyano-5-ethoxycarbonyl-6-methyl-4-styrylpyridine-2(1H)-thione with some N-aryl-2-chloroacetamides, in the presence of sodium acetate, gave the corresponding 2-(N-arylcarbamoylmethylsulfanyl)-3-cyano-5-ethoxycarbonyl-6-methyl-4-styrylpyridines I [R1 = H, Me, NO2, etc.]. Reaction of compound 3-cyano-5-ethoxycarbonyl-6-methyl-4-styrylpyridine-2(1H)-thione with some N-aryl-2-chloroacetamides, in the presence of sodium acetate, gave the corresponding 2-(N-arylcarbamoylmethylsulfanyl)-3-cyano-5-ethoxycarbonyl-6-methyl-4-styrylpyridines I [R1 = H, Me, NO2, etc.]. When compounds I were subjected to Thorpe-Ziegler reaction conditions, they converted into the corresponding 3-amino-5-ethoxycarbonyl-2-(N-arylcarbamoyl)-6-methyl-4-styrylthieno[2,3-b]pyridines II [R2 = NH2]. Compounds II [R1 = H, Cl, NO2, R2 = NH2] were reacted, in turn, with 2,5-dimethoxytetrahydrofuran to furnish the corresponding 3-(pyrrol-1-yl)thieno-pyridines II [R2 = 1-pyrrolyl]. Reactions of II [R2 = NH2] with tri-Et orthoformate were also carried out to form 3-aryl-8-acetyl-7-methyl-9-styrylpyrido[3′,2′:4,5]thieno[3,2-d]pyrimidine-4(3H)-ones III [X = C]. Reactions of compounds II [R1 = OMe, Cl, R2 = NH2] with nitrous acid were also carried out to form 3-aryl-8-acetyl-7-methyl-9-styrylpyrido[3′,2′:4,5]thieno[3,2-d][1,2,3]triazine-4(3H)-ones III [X = N]. Structural formulas of all synthesized compounds I, II and III were characterized and confirmed on the basis of their elemental and spectral analyzes. The experimental part of the paper was very detailed, including the reaction process of 2,5-Dimethoxytetrahydrofuran(cas: 696-59-3Safety of 2,5-Dimethoxytetrahydrofuran)

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. When aromatic ethers are exposed to halogen in the presence or absence of a catalyst, they undergo halogenation, such as bromination.Safety of 2,5-Dimethoxytetrahydrofuran

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Sugiyama, Yasukazu’s team published research in Bulletin of the Chemical Society of Japan in 2022 | CAS: 696-59-3

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. Friedel Crafts reaction, for example, adds an alkyl or acyl group to aromatic ethers when they react with an alkyl or acyl halide in the presence of a Lewis acid as a catalyst.Safety of 2,5-Dimethoxytetrahydrofuran

Safety of 2,5-DimethoxytetrahydrofuranIn 2022 ,《Lactam Strategy Using Amide-Selective Nucleophilic Addition for Quick Access to Complex Amines: Unified Total Synthesis of Stemoamide-Type Alkaloids》 was published in Bulletin of the Chemical Society of Japan. The article was written by Sugiyama, Yasukazu; Soda, Yasuki; Yoritate, Makoto; Tajima, Hayato; Takahashi, Yoshito; Shibuya, Kana; Ogihara, Chisato; Yokoyama, Takashi; Oishi, Takeshi; Sato, Takaaki; Chida, Noritaka. The article contains the following contents:

In this article, the authors report full details of the unified total synthesis of stemoamide-type alkaloids by chemoselective assembly of five-membered rings based on the lactam strategy. First, the concise and gram-scale synthesis of tricyclic stemoamide was achieved by vinylogous Michael addition-reduction sequence of an unsaturated γ-lactam with an unsaturated γ-lactone, followed by N-alkylation to form the seven-membered ring. From stemoamide as a common intermediate, chemoselective nucleophilic addition of unsaturated lactone derivatives provided tetracyclic natural products. While stemonine was obtained by an Ir-catalyzed lactam-selective reductive Mannich reaction, saxorumamide and isosaxorumamide were produced through the lactone-selective nucleophilic addition of the lithiated 2-silyl furan. The developed conditions for the lactam-selective nucleophilic reactions were highly general, and were found to be applicable to the total synthesis of pentacyclic stemocochinin and isostemocochinin. The strategy enabled the concise and unified total synthesis of tricyclic, tetracyclic and pentacyclic stemoamide-type alkaloids within 12 steps from a com. available compound The experimental part of the paper was very detailed, including the reaction process of 2,5-Dimethoxytetrahydrofuran(cas: 696-59-3Safety of 2,5-Dimethoxytetrahydrofuran)

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. Friedel Crafts reaction, for example, adds an alkyl or acyl group to aromatic ethers when they react with an alkyl or acyl halide in the presence of a Lewis acid as a catalyst.Safety of 2,5-Dimethoxytetrahydrofuran

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Campos Fraga, Mariana Myriam’s team published research in Energies (Basel, Switzerland) in 2022 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Electric Literature of C4H6O3

《Fast Pyrolysis Oil Upgrading via HDO with Fe-Promoted Nb2O5-Supported Pd-Based Catalysts》 was published in Energies (Basel, Switzerland) in 2022. These research results belong to Campos Fraga, Mariana Myriam; Lacerda de Oliveira Campos, Bruno; Hendrawidjaja, Handoyo; Carriel Schmitt, Caroline; Raffelt, Klaus; Dahmen, Nicolaus. Electric Literature of C4H6O3 The article mentions the following:

Due to the high acid, oxygen and water contents of fast pyrolysis oil, it requires the improvement of its fuel properties by further upgrading, such as catalytic hydrodeoxygenation (HDO). In this study, Nb2O5 was evaluated as a support of Pd-based catalysts for HDO of fast pyrolysis oil. A Pd/SiO2 catalyst was used as a reference Addnl., the impact of iron as a promoter in two different loadings was investigated. The activity of the synthesized catalysts was evaluated in terms of H2 uptake and composition of the upgraded products (gas phase, upgraded oil and aqueous phase) through elemental anal., Karl Fischer titration, GC-MS/FID and 1H-NMR. In comparison to SiO2, due to its acid sites, Nb2O5 enhanced the catalyst activity toward hydrogenolysis and hydrogenation, confirmed by the increased water formation during HDO and a higher content of hydrogen and aliphatic protons in the upgraded oil. Consequently, the upgraded oil with Nb2O5 had a lower average mol. weight and was therefore less viscous than the oil obtained with SiO2. When applied as a promoter, Fe enhanced hydrogenation and hydrogenolysis, although it slightly decreased the acidity of the support, owing to its oxophilic nature, leading to the highest deoxygenation degree (42.5 weight%) and the highest product HHV (28.2 MJ/kg). In addition to this study using 3-Hydroxydihydrofuran-2(3H)-one, there are many other studies that have used 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Electric Literature of C4H6O3) was used in this study.

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Electric Literature of C4H6O3

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Abdelhameed, Reda M.’s team published research in European Journal of Inorganic Chemistry in 2019 | CAS: 696-59-3

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. Friedel Crafts reaction, for example, adds an alkyl or acyl group to aromatic ethers when they react with an alkyl or acyl halide in the presence of a Lewis acid as a catalyst.Synthetic Route of C6H12O3

《IRMOF-3 biological activity enhancement by post-synthetic modification》 was written by Abdelhameed, Reda M.; Darwesh, Osama M.; Rocha, Joao; Silva, Artur M. S.. Synthetic Route of C6H12O3This research focused onzinc metal organic framework IRMOF3 derivative nanoparticle antimicrobial. The article conveys some information:

The growing resistance of pathogens to conventional antibiotics has become a public health problem requiring novel effective solutions In this context, metal-organic frameworks (MOFs) are attracting attention because they can act as reservoirs releasing metal ions with antibacterial properties. This action is reminiscent of that proposed for metal- and metal oxide-nanoparticles but different from the action of antibiotics. These features make MOFs promising candidates for pharmaceutical and biomedical applications. Here, IRMOF-3 was modified with 2,5-dimethoxytetrahydrofuran, N,N’-disuccinimidyl carbonate, acryloyl chloride, and phthalaldehyde to produce, resp., IRMOF-3-FU, IRMOF-3-SU, IRMOF-3-AC, IRMOF-3-DL in 38 to 90% yields. Remarkably, the biol. activity of these compounds evaluated against various bacterial and fungal strains is higher than the activity of com. antibiotics. The results came from multiple reactions, including the reaction of 2,5-Dimethoxytetrahydrofuran(cas: 696-59-3Synthetic Route of C6H12O3)

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. Friedel Crafts reaction, for example, adds an alkyl or acyl group to aromatic ethers when they react with an alkyl or acyl halide in the presence of a Lewis acid as a catalyst.Synthetic Route of C6H12O3

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

James-Okoro, Paula-Peace O.’s team published research in World News of Natural Sciences in 2021 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Category: tetrahydrofurans

In 2021,World News of Natural Sciences included an article by James-Okoro, Paula-Peace O.; Iheagwam, Franklyn N.; Sholeye, Mariam I.; Umoren, Itoroobong A.; Adetuyi, Babatunde O.; Ogundipe, Adebanke E.; Braimah, Adefoyeke A.; Adekunbi, Tobi S.; Ogunlana, Oluseyi E.; Ogunlana, Olubanke O.. Category: tetrahydrofurans. The article was titled 《Phytochemical and in vitro antioxidant assessment of Yoyo bitters》. The information in the text is summarized as follows:

In this paper, herbal bitters are widely used due to their numerous acclaimed health benefits in many Nigerian homes; however, many have not been subjected to scientific scrutiny. The aim of this study was to determine the phytochem. composition and antioxidant capacity of a non-alc. polyherbal formulation, Yoyo bitters, towards validating its broad pharmacol. claims. The phytochem. components of Yoyo bitters were ascertained by phytochem. screening assays and gas chromatog.-mass spectrometry (GC-MS). The antioxidant activity was investigated in vitro using 2,2-diphenyl-1-picryhydrazyl (DPPH) radical, hydrogen peroxide (H2O2) scavenging activity, total antioxidant capacity (TAC) and ferric reducing antioxidant power (FRAP) assays. Qual. phytochem. anal. of Yoyo bitters showed the presence of saponins, tannins, flavonoids, terpenoids, cardiac glycosides and anthocyanins. The total phenols, flavonoids, flavanols, tannins and carotenoids content were 14.741 ± 0.64 mg GAE/mL, 0.152 ± 0.01 mg RE/mL, 0.437 ± 0.02 mg RE/mL, 0.368 ± 0.04 mg TAE/mL and 0.016 ± 0.00 mg CAE/mL resp. GC-MS chromatogram revealed the presence of forty-three (43) phytochem. compounds with D-allose (41.81%), 1,6-anhydro-beta-D-glucofuranose (24.15%), 5-hydroxymethylfurfural (8.02%) and Z-6-pentadecen-1-ol acetate (3.50%) as the most abundant constituents. Yoyo bitters demonstrated effective antioxidant activity against DPPH and H2O2 with IC50 values of 0.492 mg/mL and 0.629 mg/mL resp. compared to ascorbic acid of 0.161 mg/mL and 0.130 mg/mL resp. Total antioxidant capacity and ferric reducing antioxidant power of Yoyo bitters were 0.432 mg AAE/mL and 2.236 mg AAE/mL resp. This study validates the antioxidant capacity of Yoyo bitters and provides chem. basis for its acclaimed pharmacol. actions.3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Category: tetrahydrofurans) was used in this study.

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Category: tetrahydrofurans

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Kiddane, Anley Teferra’s team published research in Current Issues in Molecular Biology in 2022 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one

In 2022,Current Issues in Molecular Biology included an article by Kiddane, Anley Teferra; Kang, Min-Jae; Ho, Truc Cong; Getachew, Adane Tilahun; Patil, Maheshkumar Prakash; Chun, Byung-Soo; Kim, Gun-Do. Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one. The article was titled 《Anticancer and Apoptotic Activity in Cervical Adenocarcinoma HeLa Using Crude Extract of Ganoderma applanatum》. The information in the text is summarized as follows:

Cancer is currently one of the foremost health challenges and a leading cause of death worldwide. Cervical cancer is caused by cofactors, including oral contraceptive use, smoking, multiparity, and HIV infection. One of the major and considerable etiologies is the persistent infection of the oncogenic human papilloma virus. G. applanatum is a valuable medicinal mushroom that has been widely used as a folk medicine for the treatment and prevention of various diseases. In this study, we obtained crude extract from G. applanatum mushroom with a subcritical water extraction method; cell viability assay was carried out and the crude extract showed an antiproliferative effect in HeLa cells with IC50 of 1.55 ± 0.01 mg/mL; however, it did not show any sign of toxicity in HaCaT. Protein expression was detected by Western blot, stability of IκBα and downregulation of NFκB, IKKα, IKKβ, p-NFκB-65(Ser 536) and p-IKKα/β(Ser 176/180), suggesting loss of survival in a dose-dependent manner. RT-qPCR revealed RNA/mRNA expression; fold changes of gene expression in Apaf-1, caspase-3, cytochrome-c, caspase-9, Bax and Bak were increased, which implies apoptosis, and NFκB was decreased in a dose-dependent manner. DNA fragmentation was seen in the treatment groups as compared to the control group using gel electrophoresis. Identification and quantification of compounds were carried out by GC-MS and HPLC, resp.; 2(5H)furanone with IC50 of 1.99 ± 0.01 μg/mL could be the responsible anticancer compound In conclusion, these findings suggest the potential use of the crude extract of G. applanatum as a natural source with anticancer activity against cervical cancer. In addition to this study using 3-Hydroxydihydrofuran-2(3H)-one, there are many other studies that have used 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one) was used in this study.

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Jensen, Pernille R.’s team published research in ACS Sustainable Chemistry & Engineering in 2020 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Formula: C4H6O3

《Visualization of Pathway Usage in an Extended Carbohydrate Conversion Network Reveals the Impact of Solvent-Enabled Proton Transfer》 was written by Jensen, Pernille R.; Knudsen, Rikke K.; Meier, Sebastian. Formula: C4H6O3 And the article was included in ACS Sustainable Chemistry & Engineering on August 17 ,2020. The article conveys some information:

Bio-sourced mols. should increasingly contribute to meeting societal demands for energy and chems., while reducing net carbon dioxide release and the dependence on fossil resources. Especially oxygenated chems. can be derived from carbohydrates, and the conversion of carbohydrates in protic and nonprotic solvents has attracted considerable interest. Here, we probe chemocatalytic carbohydrate conversion in a time-resolved manner using quant. in situ NMR spectroscopy. A core reaction network in the carbohydrate conversion by Sn(IV) in nonprotic solvents is followed by identifying and quant. tracking 10 chems. with more than 70 at. sites. In situ anal. yields nine rate constants and shows that (co)solvents with labile protons strongly affect tautomerization kinetics and product distributions at an upstream branch point of the reaction network. Solvent-enabled tautomerization and the ensuing accumulation of reactive 1,2-dicarbonyl compounds can thus be key factors influencing reaction kinetics and atom economy in carbohydrate conversion. A reaction network for carbohydrate valorization was observed, revealing the impact of solvent protons on the desired process and on aggregation and degradation reactions. In the experimental materials used by the author, we found 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Formula: C4H6O3)

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Formula: C4H6O3

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Varghese, Sincy’s team published research in Biocatalysis and Agricultural Biotechnology in 2021 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Product Details of 19444-84-9

Product Details of 19444-84-9On September 30, 2021 ,《Antidiabetic and antilipidemic effect of Clerodendrum paniculatum flower ethanolic extract. An in vivo investigation in Albino Wistar rats》 was published in Biocatalysis and Agricultural Biotechnology. The article was written by Varghese, Sincy; Kannappan, Poornima; Kanakasabapathi, Devaki; Madathil, SriRashmy; Perumalsamy, Muneeswari. The article contains the following contents:

The goal was to evaluate the effects of ethanolic extract of Clerodendrum paniculatum flower (CPF) on antidiabetic and antilipidemic tests indexes of exptl.-induced hyperglycemic rats. High Fat Diet (HFD) treated Streptozotocin (STZ) induced diabetic rats were used for this study. The acute toxicity of ethanolic extract of C. paniculatum flower (2000 mg/kg body weight) and antidiabetic effect of CPF (200 mg/kg body weight)were studied in rats. Glibenclamide (1.25 mg/kg body weight) was used as a reference drug. For antihyperglycemic evaluation, glucose, C-peptide, Insulin, Hb and glycosylated Hb(HbA1c) levels were analyzed. Low d. lipoprotein (LDL), High d. lipoprotein(HDL), triglycerides and total cholesterol were analyzed in rats. The enzymic antioxidant activity (super oxide dismutase(SOD), glutathione peroxidase(GPx), glutathione S transferase (GST) and Catalase) and non-enzymic antioxidant activity(vitamin C, vitamin E and reduced glutathione) of C. Paniculatum flower were evaluated. Important carbohydrate metabolizing enzymes like Glucose 6-phosphatase, Fructose 1and 6 diphosphatase and hexokinase were determined in exptl. rats. After the oral administration of CPF extract significantly reduced glucose levels and cholesterol values. Extract improved enzymic and non enzymic antioxidant levels. CPF extract is useful in controlling blood glucose level as well as improving lipid metabolism and body weight in rats with induced diabetic rats. The results came from multiple reactions, including the reaction of 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Product Details of 19444-84-9)

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Product Details of 19444-84-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Groenewold, Gary S.’s team published research in ACS Sustainable Chemistry & Engineering in 2020 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one

Groenewold, Gary S.; Hodges, Brittany; Hoover, Amber N.; Li, Chenlin; Zarzana, Christopher A.; Rigg, Kyle; Ray, Allison E. published an article on February 3 ,2020. The article was titled 《Signatures of Biologically Driven Hemicellulose Modification Quantified by Analytical Pyrolysis Coupled with Multidimensional Gas Chromatography Mass Spectrometry》, and you may find the article in ACS Sustainable Chemistry & Engineering.Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one The information in the text is summarized as follows:

Biomass storage conditions are a major source of feedstock quality variability that impact downstream preprocessing, feeding, handling and conversion into biofuels, chems. and products. Microbial activity in the stored biomass can result in heating that can modify or degrade the cell walls of the biomass, changing its characteristics. Anal. pyrolysis has been used to characterize biomass, but at temperatures typically used (∼600°C), differentiation of samples having different storage histories is subtle or non-existent. In this study, lower-temperature (400°C) pyrolysis was used to show large differences in corn stover samples that had experienced different biol. heating histories, indicated by pyrolysis products that were identified, and in several cases quantified using two-dimensional gas chromatog. / mass spectrometry. Pyrolysis of the samples originating from biomass that had experienced biol. heating during storage generated small oxygenates such as furfural, 5-Me furfural and 2-(5H)-furanone with efficiencies that were as much as ten times greater than those measured for samples that were not significantly heated. Most of the pyrolysis products with enhanced efficiencies were C5 oxygenates, suggesting formation from hemicellulosic precursor polymers in the corn stover. The findings suggest that biol. heating is disrupting the cell wall structure, fragmenting the hemicellulose or cellulose chains, and generating more polymer termini that have higher efficiency for generating the oxygenates at lower temperatures Further, anal. pyrolysis conducted at lower temperatures may be a beneficial strategy for improved biomass cell wall characterization, and for providing insights to understand and manage the feedstock variability to inform harvest and storage best management practices. The experimental part of the paper was very detailed, including the reaction process of 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one)

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem