Stucchi, Marta; Alijani, Sharam; Manzoli, Maela; Villa, Alberto; Lahti, Riikka; Galloni, M. G.; Lassi, Ulla; Prati, Laura published the artcile< A Pt-Mo hybrid catalyst for furfural transformation>, Product Details of C5H10O2, the main research area is platinum molybdenum catalyst furfural hydrogenation.
Furfural is a high-value chem., being the precursor of compounds such as furfuryl alc. and tetrahydrofurfuryl alc. Pt is known as active for furfural hydrogenation, but the high price limits its exploitation and imposes the search for alternatives. Here we presented a Pt/Mo bimetallic system with enhanced catalytic activity for furfural hydrogenation. For comparison, monometallic Mo- and Pt-supported on activated carbon have been prepared by impregnation and sol-immobilization. The bimetallic Pt/Mo was prepared impregnating the Mo-AC catalyst with Pt, using Na2PtCl4 as a precursor, PVA, and NaBH4 as reducing agent. HR-TEM analyses on Pt/Mo catalyst showed Mo-containing agglomerates embedded in the carbon matrix, displaying diffraction fringes with spacing typical of Mo4O11 in the orthorhombic phase, as well as Pt nanoparticles more evenly dispersed in the Mo-AC system compared to bare AC. The Pt/Mo catalyst showed higher activity than both monometallic ones, and it converted 92% of furfural to furfuryl alc. and Et furfuryl ether with 20% and 80% selectivity, resp. However, despite a lower initial activity, the monometallic Mo/AC catalyst showed a complete selectivity to the ether.
Catalysis Today published new progress about Binding energy. 97-99-4 belongs to class tetrahydrofurans, and the molecular formula is C5H10O2, Product Details of C5H10O2.
Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem