Quality Control of 3-Hydroxydihydrofuran-2(3H)-oneOn June 1, 2022, Wurzler, Gleicielle Tozzi; da Silva, Victor Teixeira; de Almeida Azevedo, Debora; Ana da Silva, Ayla Sant’; Noronha, Fabio Bellot published an article in Fuel Processing Technology. The article was 《Integrating bio-oil and carbohydrate valorization on the fractionation of sugarcane bagasse via Organosolv process using Mo2C-based catalysts》. The article mentions the following:
This work studied the fractionation of sugarcane bagasse via Organosolv treatment using isopropanol/water in the presence of Raney-Ni and molybdenum carbide catalysts (Bulk Mo2C and Mo2C supported on activated carbon (AC) or Al2O3). The degree of delignification, the bio-oil and solid residue composition depended on the type of catalyst. A partial extraction of hemicellulose occurred followed by depolymerization, resulting in a product distribution that depended on the catalyst. Raney-Ni catalyst promoted the formation of diols and triols, while xylose, furfural, and furan were mainly produced by Mo2C based-catalysts. The Organosolv treatment without catalyst and in the presence of bulk Mo2C produced a bio-oil containing mainly 2,3-dihydrobenzofuran. Mo2C/AC and Mo2C/Al2O3 are promising catalysts for the fractionation of sugarcane bagasse that produced a bio-oil with higher yield to substituted methoxyphenols and a solid residue more easily hydrolyzed by cellulases, producing higher yield to glucose than Raney-Ni catalyst. In the experiment, the researchers used 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Quality Control of 3-Hydroxydihydrofuran-2(3H)-one)
3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Quality Control of 3-Hydroxydihydrofuran-2(3H)-one
Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem