《Fast Pyrolysis Oil Upgrading via HDO with Fe-Promoted Nb2O5-Supported Pd-Based Catalysts》 was published in Energies (Basel, Switzerland) in 2022. These research results belong to Campos Fraga, Mariana Myriam; Lacerda de Oliveira Campos, Bruno; Hendrawidjaja, Handoyo; Carriel Schmitt, Caroline; Raffelt, Klaus; Dahmen, Nicolaus. Synthetic Route of C4H6O3 The article mentions the following:
Due to the high acid, oxygen and water contents of fast pyrolysis oil, it requires the improvement of its fuel properties by further upgrading, such as catalytic hydrodeoxygenation (HDO). In this study, Nb2O5 was evaluated as a support of Pd-based catalysts for HDO of fast pyrolysis oil. A Pd/SiO2 catalyst was used as a reference Addnl., the impact of iron as a promoter in two different loadings was investigated. The activity of the synthesized catalysts was evaluated in terms of H2 uptake and composition of the upgraded products (gas phase, upgraded oil and aqueous phase) through elemental anal., Karl Fischer titration, GC-MS/FID and 1H-NMR. In comparison to SiO2, due to its acid sites, Nb2O5 enhanced the catalyst activity toward hydrogenolysis and hydrogenation, confirmed by the increased water formation during HDO and a higher content of hydrogen and aliphatic protons in the upgraded oil. Consequently, the upgraded oil with Nb2O5 had a lower average mol. weight and was therefore less viscous than the oil obtained with SiO2. When applied as a promoter, Fe enhanced hydrogenation and hydrogenolysis, although it slightly decreased the acidity of the support, owing to its oxophilic nature, leading to the highest deoxygenation degree (42.5 weight%) and the highest product HHV (28.2 MJ/kg). In addition to this study using 3-Hydroxydihydrofuran-2(3H)-one, there are many other studies that have used 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Synthetic Route of C4H6O3) was used in this study.
3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Synthetic Route of C4H6O3
Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem