Sep-8 News Can You Really Do Chemisty Experiments About 13031-04-4

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 13031-04-4

SDS of cas: 13031-04-4, Catalysts function by providing an alternate reaction mechanism that has a lower activation energy than would be found in the absence of the catalyst. In some cases, the catalyzed mechanism may include additional steps.In a article, 13031-04-4, molcular formula is C6H8O3, introducing its new discovery.

A screening platform, which offers a high-throughput approach as well as an easy investigation of kinetic isotope effects, applicable to a wide range of reactions is presented. To illustrate the high potential of this approach, the asymmetric transfer hydrogenation of methyl benzoylformate with copper(II) bis(oxazoline) and Hantzsch ester was examined. Accordingly, the enantioselectivities of the reaction performed on-column in a microcapillary were comparable to standard reaction conditions, however, we were able achieve catalysis and analysis in a single step in less than 30 min. The throughput can be increased by simultaneous investigation of different substrates without increasing the overall analysis time. Use of di-deuterated Hantzsch ester allowed us to investigate the kinetic isotope effect of the transfer hydrogenation reaction only requiring a minute amount of the deuterated transfer hydrogenation reagent. Hence we were able to get further insights into the mechanism of the asymmetric transfer hydrogenation using Hantzsch ester as hydrogen source. The here presented technique is broadly applicable to study isotope effects on a very small scale, which is a rapid and an inexpensive alternative compared to conventional experiments.

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 13031-04-4

Reference:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem