A new application about (S)-4-Hydroxydihydrofuran-2(3H)-one

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 7331-52-4

Electric Literature of 7331-52-4, The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.7331-52-4, Name is (S)-4-Hydroxydihydrofuran-2(3H)-one, molecular formula is C4H6O3. In a Article,once mentioned of 7331-52-4

Application of off-line pyrolysis with dynamic solid-phase microextraction to the GC-MS analysis of biomass pyrolysis products

Pyrolysis coupled with dynamic solid-phase micro extraction (Py-SPME) followed by GC-MS analysis was applied to the determination of volatile compounds evolved by a micro-scale off-line pyrolysis apparatus, in order to extend the information affordable with this type of analytical equipment. The Py-SPME method with a carboxen/PDMS fiber working in the retracted mode was tested on four biomass samples (switchgrass, sweet sorghum, corn stalk and poplar) for qualitative analysis of semi-volatile pyrolysis products and quantitative determination of main volatiles (C1-C4) pyrolysis products. The developed procedure allowed capturing and analysis of all GC analyzable compounds, without memory effects and with good peak resolution also for early GC-eluting compounds. Twelve main volatile pyrolysis products, including hydroxyacetaldehyde and acetic acid, were successfully quantified; in spite of the intrinsic variability introduced by dynamic SPME sampling, results were relatively accurate and consistent with literature data on bench pyrolysis reactors.

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 7331-52-4

Reference:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem