Extracurricular laboratory:new discovery of 13031-04-4

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Synthetic Route of 13031-04-4. In my other articles, you can also check out more blogs about 13031-04-4

Synthetic Route of 13031-04-4, Chemistry is the science of change. But why do chemical reactions take place? Why do chemicals react with each other? The answer is in thermodynamics and kinetics.In a document type is Article, and a compound is mentioned, 13031-04-4, 4,4-Dimethyldihydrofuran-2,3-dione, introducing its new discovery.

Fundamental insights into the enantioselectivity of hydrogenations on cinchona-modified platinum and palladium

The influence of the configuration at the C8 and C9 positions of cinchona alkaloids was investigated by comparing the efficiency of cinchonidine, cinchonine, and 9-epi-cinchonidine as chiral modifiers. In the hydrogenation of ketones (methyl benzoylformate, ketopantolactone, methylglyoxal dimethylacetal, 2,2,2-trifluoroacetophenone) on Pt, a change in the configuration at C9 did not affect the absolute configuration of the main products; however, the ees and rates dropped significantly. In the hydrogenation of alpha-functionalized olefins (E-2-methyl-2-hexenoic acid, 2-phenylcinnamic acid, and 4-methoxy-6-methyl-2H-pyran-2-one) on Pd, replacement of cinchonidine or cinchonine by epi-cinchonidine diminished the rates and almost eliminated the enantioselection, indicating that a subtle combination of C8 and C9 configurations is required on Pd. DFT calculations of the adsorption of the modifiers and the nonlinear behavior of modifier mixtures revealed that the lower reaction rates observed for 9-epi-cinchonidine-modified surfaces cannot be related to different adsorption strength of this modifier. Additionally, substrate-modifier docking interactions are presented.

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Synthetic Route of 13031-04-4. In my other articles, you can also check out more blogs about 13031-04-4

Reference£º
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem