Discovery of Furan-2,4(3H,5H)-dione

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 4971-56-6

Application of 4971-56-6, Because a catalyst decreases the height of the energy barrier, its presence increases the reaction rates of both the forward and the reverse reactions by the same amount.4971-56-6, Name is Furan-2,4(3H,5H)-dione, molecular formula is C4H4O3. In a article£¬once mentioned of 4971-56-6

One-pot, three-component synthesis of 7-azaindole derivatives from N-substituted 2-amino-4-cyanopyrroles, various aldehydes, and active methylene compounds

An efficient and practical route to 7-azaindole framework has been developed by one-pot, three-component cyclocondensation of N-substituted 2-amino-4-cyanopyrroles, various aldehydes, and active methylene compounds in ethanol or acetic acid at reflux. Reactions involving tetronic acid, indane-1,3-dione, dimedone, and 5-phenylcyclohexane-1,3-dione gave carbocyclic fused 7-azaindoles, whereas Meldrum’s acid, benzoylacetonitrile, and malononitrile resulted in the highly substituted 7-azaindole derivatives, making this strategy very useful in diversity-oriented synthesis (DOS).

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 4971-56-6

Reference£º
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem