With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.112372-15-3,Furo[2,3-c]pyridine-2-carboxylic acid,as a common compound, the synthetic route is as follows.
Example 38 Synthesis of (S)-N-(2-(2-cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)furo[2,3-c]pyridine-2-carboxamide To a stirred solution of furo[2,3-c]pyridine-2-carboxylic acid (0.050 g, 0.30 mmol, 1.0 equiv) in DMF (10 mL), was added (S)-4,4-difluoro-1-glycylpyrrolidine-2-carbonitrile 4-methylbenzenesulfonate (0.110 g, 0.30 mmol, 1.0 equiv), HOBt (0.049 g, 0.36 mmol, 1.2 equiv) and EDC.HCl (0.069 g, 0.36 mmol, 1.2 equiv). The mixture was allowed to stir at RT for 10 min. Triethyl amine (0.1 mL) was added and the mixture was allowed to stir at RT for overnight. Product formation was confirmed by LCMS and TLC. The reaction mixture was diluted with water and extracted with ethyl acetate (50 mL*2). Combined organic extracts were washed with water (20 mL*4), dried over anhydrous Na2SO4 and concentrated. The crude product obtained was purified by reverse phase HPLC to obtain (S)-N-(2-(2-cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)furo[2,3-c]pyridine-2-carboxamide (0.020 g, 19% Yield) as a white solid. LCMS 335 [M+H]+ 1H NMR (DMSO-d6, 400 MHz) delta (br. s., 1H), 9.09 (s, 1H), 8.49 (d, J=5.3 Hz, 1H), 7.84 (d, J=5.3 Hz, 1H), 7.69 (s, 1H), 5.11 (d, J=9.6 Hz, 1H), 4.25-4.39 (m, 1H), 4.04-4.22 (m, 3H), 2.72-3.00 ppm (m, 3H)., 112372-15-3
As the paragraph descriping shows that 112372-15-3 is playing an increasingly important role.
Reference£º
Patent; Praxis Biotech LLC; ALFARO, Jennifer; BELMAR, Sebastian; BERNALES, Sebastian; PUJALA, Brahmam; PANPATIL, Dayanand; BHATT, Bhawana; US2019/185451; (2019); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem