With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.88675-24-5,Tetrahydrofuran-3-amine,as a common compound, the synthetic route is as follows.
88675-24-5, Example A30 To a solution of Example A3 (2.0 g, 5.7 mmol) in NMP (10 mL) was added tetrahydro-furan-3-ylamine (1.5 g, 17.2 mmol) and DBU (1.7 g, 11.4 mmol). Nitrogen was bubbled through the mixture for 5 min and then it was heated in the microwave at 180¡ã C. for 1 h. The reaction mixture was cooled to RT, poured into water and extracted with EtOAc (3*). The combined organics were washed with brine, dried over Na2SO4, concentrated under reduced pressure and purified by silica gel chromatography to give 3-(5-amino-2-chloro-4-fluorophenyl)-1-ethyl-7-(tetrahydrofuran-3-ylamino)-1,6-naphthyridin-2(1H)-one (0.57 g, 25percent yield). 1H NMR (400 MHz, DMSO-d6): delta 8.39 (s, 1H), 7.66 (s, 1H), 7.27 (d, J=6.4 Hz, 1H), 7.18 (d, J=11.2 Hz, 1H), 6.72 (d, J=9.6 Hz, 1H), 6.33 (s, 1H), 5.31 (s, 2H), 4.46-4.42 (m, 1H), 4.08 (q, J=6.8 Hz, 2H), 3.89-3.81 (m, 2H), 3.75-3.69 (m, 1H), 3.55-3.52 (m, 1H), 2.22-2.17 (m, 1H), 1.83-1.79 (m, 1H), 1.20 (t, J=6.8 Hz, 3H).
As the paragraph descriping shows that 88675-24-5 is playing an increasingly important role.
Reference£º
Patent; Deciphera Pharmaceuticals, LLC; Flynn, Daniel L.; Kaufman, Michael D.; Petillo, Peter A.; US8461179; (2013); B1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem