Some tips on 204512-95-8

The synthetic route of 204512-95-8 has been constantly updated, and we look forward to future research findings.

204512-95-8, (S)-Tetrahydrofuran-3-amine hydrochloride is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

2-Chloro-N-(5-hydroxy-2-adamantyl)-4-propan-2-yloxypyrimidine-5-carboxamide (Intermediate 39, 560 mg, 1.53 mmol), and (S)-tetrahydrofuran-3-amine hydrochloride (284 mg, 2.30 mmol) were suspended in butyronitrile (12 mL). DIPEA (0.533 mL, 3.06 mmol) was added and the mixture was sealed into a microwave vial. The reaction was heated to 150 C. for 2.5 h in the microwave reactor, then was cooled to RT. The reaction mixture was diluted with EtOAc and washed with sat. brine. The organic layer was dried over MgSO4 and concentrated. The crude product was purified by preparative HPLC to afford the title compound (149 mg, 23%); 1H NMR (400 MHz) 1.38 (6H, d), 1.47 (2H, d), 1.68 (8H, m), 1.90 (1H, m), 2.02 (3H, d), 2.13 (1H, m), 3.55 (1H, s), 3.70 (1H, dd), 3.77-3.94 (2H, m), 3.95-4.01 (1H, m), 4.39 (2H, m), 5.50 (1H, hept), 7.66 (1H, d), 7.92 (1H, m), 8.60 (1H, s); m/z MH+=417; HPLC tR=1.58 min., 204512-95-8

The synthetic route of 204512-95-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; ASTRAZENECA AB; US2011/92526; (2011); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Simple exploration of 118399-28-3

The synthetic route of 118399-28-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.118399-28-3,(R)-Benzyl (5-oxotetrahydrofuran-3-yl)carbamate,as a common compound, the synthetic route is as follows.

12. Synthesis of intermediate 5c (0389) Exact Mass: 363.22 (0390) (0391) 4 5c (0392) [00135] To the solution of intermediate 4 (6.5 g, 27.7 mmol) in THF (100 mL) was added intermediate c (3.6 g, 27.7 mmol), and the solution was stirred at room temperature overnight. After completion of the reaction, the solvent was removed in vacuo, the residue was purified by chromatography column (PE EA = 3/1) to afford intermediate 5c (7.2 g, 72%) as yellow oil. 3, 118399-28-3

The synthetic route of 118399-28-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; MERRIMACK PHARMACEUTICALS, INC.; DRUMMOND, Daryl, C.; GENG, Bolin; KIRPOTIN, Dmitri, B.; TIPPARAJU, Suresh, K.; KOSHKARYEV, Alexander; (125 pag.)WO2017/123616; (2017); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Some tips on 17347-61-4

The synthetic route of 17347-61-4 has been constantly updated, and we look forward to future research findings.

17347-61-4, 2,2-Dimethylsuccinicanhydride is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step F: Intermediate 27-1 To a solution of the intermediate 26-1 (26 mg, 0.037 mmol) in anhydrous pyridine (2 mL) were added D AP (22.42 mg, 0.184 mmol) and 3,3-dimethy[dihydro-2,5-furandione (47 mg, 0.367 mmol). After stirring at 80 ¡ãC overnight, the reaction mixture was diluted with EtOAc (30 mL). The organic phase was washed with aqueous HCI (2 N, 10 mL), brine (20 mL), dried over sodium sulfate and evaporated to dryness in vacuo to provide a residue, which was purified by column chromatography on silica gel (Hex:EtOAc = 4:1 ) to afford the intermediate 27-1 (15 mg, 48.9 percent) as a white foam. LC/MS: m/z calculated 835.4, found 858.4 (M + Na)+., 17347-61-4

The synthetic route of 17347-61-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; GLAXOSMITHKLINE LLC; GAO, Daxin; HAN, Nianhe; JOHNS, Brian; JIN, Zhimin; NING, Fangxian; TANG, Jun; WU, Yongyong; YANG, Heping; WO2013/20245; (2013); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Brief introduction of 97-99-4

97-99-4 (Tetrahydrofuran-2-yl)methanol 7360, aTetrahydrofurans compound, is more and more widely used in various fields.

97-99-4, (Tetrahydrofuran-2-yl)methanol is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of (R)-tetrahydrofurfuryl alcohol (Lancaster, 1.0 g, 9.8 mmol) in 5 mL of CH2Cl2 and 5 mL of pyridine was added p- toluenesulfonyl chloride (2.8 g, 14.7 mmol) in portions over 15 minutes. The mixture was stirred at ambient temperature for 3 hours and was quenched with 10 mL of saturated, aqueous NaHCO3. The layers were separated and the aqueous layer was extracted with three 5 mL portions OfCH2Cl2. The combined organic extracts were dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to afford the title compound. MS (DCI/NH3) m/z 257 (M+H)+, 274 (M+NH4)+, 97-99-4

97-99-4 (Tetrahydrofuran-2-yl)methanol 7360, aTetrahydrofurans compound, is more and more widely used in various fields.

Reference£º
Patent; ABBOTT LABORATORIES; WO2009/67613; (2009); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Some tips on 219823-47-9

219823-47-9, As the paragraph descriping shows that 219823-47-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.219823-47-9,(R)-Tetrahydrofuran-3-yl 4-methylbenzenesulfonate,as a common compound, the synthetic route is as follows.

Intermediate 84-Bromo-1 -[(SHetrahvdro-furan-3-nuPi-Iota H-pyridin-2-one; A mixture of 4-bromo-1 H-pyridin-2-one (0.50 g), (/:?)-toluene-4-sulfonic acid tetrahydrofuran-3- yl ester (0.40 g), potassium carbonate (0.80 g), and dimethylsulfoxide (5 mL) was stirred at 80 ‘C overnight. After cooling to ambient temperature, water was added and the resulting mixture was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried (MgS04), and concentrated. The residue was purified by HPLC on reversed phase (acetonitrile/water) to afford the title compound [besides, 4-bromo-2-[(S)-tetrahydro- furan-3-yloxy]-pyridine was isolated in 0.36 g (56% of theory)]. Yield: 0.1 1 g (1 6% of theory); LC (method 3): tR = 2.18 min; Mass spectrum (ESI+): m/z = 244/246 (Br) [M+H]+.

219823-47-9, As the paragraph descriping shows that 219823-47-9 is playing an increasingly important role.

Reference£º
Patent; VITAE PHARMACEUTICALS, INC.; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; LEFTHERIS, Katerina; ZHUANG, Linghang; TICE, Colin, M.; SINGH, Suresh, B.; YE, Yuanjie; XU, Zhenrong; HIMMELSBACH, Frank; ECKHARDT, Matthias; WO2011/159760; (2011); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Some tips on 453-20-3

As the paragraph descriping shows that 453-20-3 is playing an increasingly important role.

453-20-3,With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.453-20-3,3-Hydroxytetrahydrofuran,as a common compound, the synthetic route is as follows.

To a solution of 3-tetrahydrofuranol (1 g, 6.5 mmol) in DCM (10 mL) was added triethylamine (1.9 mL, 13.6 mmol). The reaction mixture was stirred for 15 minutes at room temperature. To the reaction mixture was added methanesulfonyl chloride (1.08 mL, 13.6 mmol) at 0C. The reaction mixture was stirred for a further 18 h. The reaction mixture was then quenched by addition of water, and diluted with EtOAc. The organic layer was washed with water and brine, dried over sodium sulphate and concentrated to yield the title compound (1.9 g, 88%). deltaEta (CDC13) 5.32 (m, 1H), 4.10-3.80 (m, 4H), 3.70 (s, 3H), 2.30-2.20 (m, 2H).

As the paragraph descriping shows that 453-20-3 is playing an increasingly important role.

Reference£º
Patent; UCB PHARMA S.A.; KATHOLIEKE UNIVERSITEIT LEUVEN, K.U.LEUVEN R&D; BROOKINGS, Daniel Christopher; FORD, Daniel James; FRANKLIN, Richard Jeremy; GHAWALKAR, Anant Ramrao; KULISA, Claire Louise; NEUSS, Judi Charlotte; REUBERSON, James Thomas; WO2013/68458; (2013); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Some tips on 149809-43-8

The synthetic route of 149809-43-8 has been constantly updated, and we look forward to future research findings.

149809-43-8, ((3R,5R)-5-((1H-1,2,4-Triazol-1-yl)methyl)-5-(2,4-difluorophenyl)tetrahydrofuran-3-yl)methyl 4-methylbenzenesulfonate is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,149809-43-8

To a solution of 4-bromo-2-methyl phenol (920 mg, 4.89 mmol) in DMSO (10 mL) was added aq sodium hydroxide (0.39 mL, 12.5 M, 4.89 mmol) and the mixture stirred at RT for 10 min and then treated with the tosylate (IX) (2.00 g, 4.45 mmol). The reaction mixture was stirred at 60C for 72 hr then cooled to RT and partitioned between water (25 mL) and EtOAc (20 mL). The organic phase was separated and retained and the aq layer was extracted with EtOAc (3 x 25 mL). The combined organic extracts were washed with brine (3 x 15 mL) and then dried and evaporated in vacuo. The crude product was purified by flash column chromatography (S1O2, 12 g, 0-30% EtOAc in DCM, gradient elution) to give the title compound, intermediate (XIII), as a colourless oil (1.84 g, 86%); Rl 2.78 min (Method a); m/z 464 (M+H)+ (ES+); 1 H NMR delta: 2.09 (3H, s), 2.17 (1 H, dd), 2.37-2.43 (1 H, m), 2.52-2.60 (1 H, m), 3.72-3.78 (2H, m), 3.82 (1 H, dd), 4.00-4.06 (1 H, m), 4.57 (2H, dd), 6.82 (1 H, d), 7.00 (1 H, td), 7.25-7.34 (4H, m), 7.76 (1 H, s), 8.34 (1 H, s).

The synthetic route of 149809-43-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; PULMOCIDE LIMITED; SUNOSE, Mihiro; COLLEY, Thomas Christopher; ITO, Kazuhiro; RAPEPORT, Garth; STRONG, Peter; (55 pag.)WO2016/87878; (2016); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Simple exploration of 124391-75-9

The synthetic route of 124391-75-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.124391-75-9,(S)-(Tetrahydrofuran-3-yl)methanol,as a common compound, the synthetic route is as follows.

Example 162A Toluene-4-sulfonic acid tetrahydro-furan-3-ylmethyl ester To a solution of tetrahydro-3-furanmethanol (Aldrich, 1.0 mL, 10.4 mmol) in 5 mL CH2Cl2 and 5 mL pyridine was added para-toluenesulfonyl chloride (3.0 g, 15.6 mmol) portion-wise over 15 minutes. This mixture stirred at ambient temperature for 3 hours then 5 mL H2O was added. The layers were separated and the aqueous layer was extracted 2*5 mL CH2Cl2. The combined organics were dried over Na2SO4, filtered, concentrated under reduced pressure and dried under vacuum (~1 mm Hg) to afford the title compound (2.62 g, 10.2 mmol, 98percent yield). 1H NMR (300 Mhz, CDCl3) delta ppm 1.49-1.63 (m, 1 H) 1.94-2.08 (m, 1 H) 2.46 (s, 3 H) 2.52-2.68 (m, 1 H) 3.49 (dd, J=9.16, 5.09 Hz, 1 H) 3.64-3.84 (m, 3 H) 3.88-4.03 (m, 2 H) 7.36 (d, J=8.14 Hz, 2 H) 7.76-7.82 (m, 2 H); MS (DCI/NH3) m/z 257 (M+H)+., 124391-75-9

The synthetic route of 124391-75-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Florjancic, Alan S.; Dart, Michael J.; Ryther, Keith B.; Perez-Medrano, Arturo; Carroll, William A.; Patel, Meena V.; Tietje, Karin Rosemarie; Li, Tongmei; Kolasa, Teodozyj; Gallagher, Megan E.; Peddi, Sridhar; Frost, Jennifer M.; Nelson, Derek W.; US2008/58335; (2008); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Brief introduction of 16874-33-2

As the paragraph descriping shows that 16874-33-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.16874-33-2,Tetrahydrofuran-2-carboxylic acid,as a common compound, the synthetic route is as follows.

Step 1: Synthesis of ethyl tetrahydrofuran-2-carboxylate:To a stirred solution of tetrahydrofuran-2-carboxylic acid (about 10 g) in ethanol (150 ml), sulfuric acid (about 10 ml) was added and refluxed for 6 hours at 80 C. Completion of the reaction was monitored by TLC, reaction mixture was evaporated under reduced pressure, the residue was taken in water, neutralized with saturated NaHC03 and extracted with DCM, the organic layer was dried over a2S04 and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using 5% ethyl acetate in hexane as eluent to furnish the title compound (12 g) as a light yellow liquid. NMR (300 MHz, CDC13): 1.22- 1.27 (m, 3H); 1.57- 1.87 (m, 8H); 2.65-2.76 (m, 1H); 4.08-4.15 (m, 2H); ES Mass: [M+l ] 143 (100%)., 16874-33-2

As the paragraph descriping shows that 16874-33-2 is playing an increasingly important role.

Reference£º
Patent; HETERO RESEARCH FOUNDATION; PARTHASARADHI REDDY, Bandi; VAMSI KRISHNA, Bandi; MANOHAR SHARMA, Vedula; RATHNAKAR REDDY, Kura; MADHANMOHAN REDDY, Musku; VL SUBRAHMANYAM, Lanka; PREM KUMAR, Mamnoor; WO2011/61590; (2011); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Analyzing the synthesis route of 184950-35-4

As the paragraph descriping shows that 184950-35-4 is playing an increasingly important role.

184950-35-4, (Tetrahydrofuran-3-yl)methanamine hydrochloride is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Production Example 110 (0426) Tetrahydrofuran-3-ylmethylamine hydrochloride (0.24 g, 1.78 mmol) and triethylamine (0.18 g, 1.78 mmol) were added to chloroform (amylene addition product) (10 mL). 5-(4-Phenylbenzyl)oxymethylisoxazole-3-carboxylic acid (0.40 g, 1.19 mmol), 1-hydroxybenzotriazole (0.02 g, 0.18 mmol) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (0. 34 g, 1. 78 mmol) were added to the mixture at room temperature, and the mixture was stirred overnight. Then, dilute hydrochloric acid was added thereto, and the mixture was extracted twice with chloroform. The organic layer was washed with a saturated aqueous sodium bicarbonate solution, dried over anhydrous sodium sulfate, and then concentrated under reduced pressure. The residue was applied to a silica gel column chromatography to obtain 0.42 g of N-(tetrahydrofuran-3-ylmethyl)-5-(4-phenylbenzyloxymethyl)i soxazole-3-carboxamide (hereinafter, referred to as Compound of Present Invention (115)) represented by the following formula. 1H-NMR(CDCl3, TMS, delta(ppm)): 1.64-1.72 (1H, m), 2.05-2.13(1H, m), 2.53-2.63(1H, m), 3.45-3.49(2H, m), 3.57-3.61(1H, m), 3.74-3.80(1H, m), 3.84-3.95(2H, m), 4.65(2H, s), 4.69 (2H, s), 6.75(1H, s), 6.94(1H, br s), 7.34-7.38(1H, m), 7.42-7.47(4H, m), 7.58-7.61(4H, m), 184950-35-4

As the paragraph descriping shows that 184950-35-4 is playing an increasingly important role.

Reference£º
Patent; Sumitomo Chemical Company, Limited; MITSUDERA, Hiromasa; AWASAGUCHI, Kenichiro; AWANO, Tomotsugu; UJIHARA, Kazuya; EP2952096; (2015); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem