Downstream synthetic route of 111769-27-8

111769-27-8 (R)-Tetrahydrofuran-3-amine 4-methylbenzenesulfonate 14243169, aTetrahydrofurans compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.111769-27-8,(R)-Tetrahydrofuran-3-amine 4-methylbenzenesulfonate,as a common compound, the synthetic route is as follows.

c) Preparation of the intermediate compound (R)-l-(5,6-dichloro-lH-benzo[d]imidazol-2-yl)-N- (tetrahydrofuran-3-yl)piperidine-4-carboxamide l-(5,6-Dichloro-lH-benzo[d]imidazol-2-yl)piperidine-4-carboxylic acid (628 mg, 2.0 mmol), (R)-(+)-tetrahydrofuran-3-amine 4-methylbenzenesulfonate (622 mg, 2.4 mmol), 2-(7-aza-lH- benzotriazole-l-yl)-l,l,3,3-tetramethyluronium hexafluorophosphate (HATU, 912 mg, 2.4 mmol), JV,JV-diisopropylethylamine (Hunig’s base, DIEA, 775 mg, 6.0 mmol) and N5N- dimethylformamide (25 niL) was stirred at room temperature for 100 minutes. The reaction mixure was concentrated in vacuo, the residue purified on column (silica gel, flashchromatography, dichloromethane/methanol, gradient elution 4-20 % methanol) and finally precipitated from chloroform to give 378 mg (49 % yield) of (R)-l-(5,6-dichloro-lH- benzo[d]imidazol-2-yl)-N-(tetrahydrofuran-3-yl)piperidine-4-carboxamide as a white solid. LC- MS (m/z) 382.9 (M+ 1).

111769-27-8 (R)-Tetrahydrofuran-3-amine 4-methylbenzenesulfonate 14243169, aTetrahydrofurans compound, is more and more widely used in various.

Reference£º
Patent; NOVASAID AB; WANNBERG, Johan; ALTERMAN, Mathias; MALM, Johan; STENBERG, Patric; WESTMAN, Jacob; WALLBERG, Hans; WO2011/23812; (2011); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Downstream synthetic route of 111769-27-8

111769-27-8 (R)-Tetrahydrofuran-3-amine 4-methylbenzenesulfonate 14243169, aTetrahydrofurans compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.111769-27-8,(R)-Tetrahydrofuran-3-amine 4-methylbenzenesulfonate,as a common compound, the synthetic route is as follows.

A mixture of (R)-l-(5,6-dichloro-lH-benzo[d]imidazol-2-yl)-N-(tetrahydrofuran-3-yl)- piperidine-4-carboxamide (100 mg, 0.261 mmol) dimethylsulfoxide (2 mL), caesium carbonate (0.392 mmol), 2-iodopyridine (0.783 mmol), 8-hydroxyquinoline (0.104 mmol), polyethylene glycol (0.511 mmol) and copper(I) oxide (0.0522 mmol) was subjected to microwave conditions for two hour at 120C. The reaction mixture was filtered and subjected to preparative hplc(performed on a Gilson-Finnigan ThermoQuest AQA system equipped with a Zorbax SB-C8 (5 muetaiota, 21.2 x 150 mm) column, using methanol/water (0.05 % formic acid) gradients at a flow rate of 15 mL/min with UV (214 or 254 nm) and MS (ESI) detection) to give 30 mg (25 % yield) of (R)- 1 -(5,6-dichloro- 1 -(pyridin-2-yl)- lH-benzo[d]imidazol-2-yl)-N-(tetrahydrofuran-3 – yl)piperidine-4-carboxamide as a pale yellow solid. LC-MS (m/z) 460.3 (M+l).

111769-27-8 (R)-Tetrahydrofuran-3-amine 4-methylbenzenesulfonate 14243169, aTetrahydrofurans compound, is more and more widely used in various.

Reference£º
Patent; NOVASAID AB; WANNBERG, Johan; ALTERMAN, Mathias; MALM, Johan; WO2012/117062; (2012); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Downstream synthetic route of 13031-04-4

13031-04-4 4,4-Dimethyldihydrofuran-2,3-dione 39, aTetrahydrofurans compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.13031-04-4,4,4-Dimethyldihydrofuran-2,3-dione,as a common compound, the synthetic route is as follows.

Examples 1-4 [00041] The process of the present invention as set forth in FIG. 1 is typically initiated by dissolving the alpha ketocarbonyl compound and the modifier in vessel (1). The resulting solution contains from about 0.1 wt % to about 100 wt % of the alpha ketocarbonyl compound and from about 1¡Á10-5 wt % to about 0.5 wt % of modifier. [00042] The mass flow is started at the reaction temperature, for example, at 17 C. or 20 C. (Examples 1 and 2, respectively). The above solution containing an alpha ketocarbonyl compound and a modifier is pumped into the fixed bed reactor (2) and contacted with hydrogen to start the hydrogenation reaction. Before catalytic runs, the reactor is flushed with nitrogen. [00043] Subsequently, the content of vessel (1) is continuously pumped into the fixed bed reactor. The solution flow rate is preferably from about 0.1 to about 50 ml/minute, the preferred flow of the alpha ketocarbonyl compound is 2¡Á10-5-2¡Á10-2 mol/gcat/minute. More preferably, the solution flow rate is preferably from about 2.5 to about 10 ml/minute, and the flow of the alpha ketocarbonyl compound is from about 2¡Á10-4-3¡Á10-3 mol/gcat/minute. [00044] The modifier flow rate is preferably from about 2¡Á10-9 to about 2¡Á10-4 mol/gcat/minute, such as, for example, from about 2¡Á10-8 to about 7¡Á10-6 mol/gcat/minute. [00045] Hydrogen is continuously fed into the fixed bed reactor via flow line (3) containing a compressor (4) and a pressure control system (5). The inert gas, e.g. nitrogen, is fed into the reactor (2) via line (7). [00046] The hydrogen flow rate into the reactor is metered and monitored by a rotameter. Suitable hydrogen flow rates are from about 0.0001 mol/minute (2.4 ml/minute) to about 1 mol/minute (24000 ml/minute), for example, from about 5¡Á10-6 to about 10 mol/gcat/minute. [00047] The hydrogenation reaction can be carried out at a relatively low temperature ranging between about -20 C. and about 100 C., the preferred temperature range is from about -10 C. to about 50 C., such as for example from about 0 C. to about 20 C. [00048] The pressure in the reactor is suitably adjusted to between about 2 bar and about 150 bar, preferably from about 40 bar to about 100 bar. [00049] The effluent from the hydrogenation reaction zone is fed over a two-step expansion module (6) to a separator where the alpha hydroxy carbonyl compound is recovered. [00050] The process set forth in FIG. 2 is initiated by dissolving the alpha ketocarbonyl compound and the modifier in vessel (1) or by adding a solution containing the modifier to a liquid alpha ketocarbonyl compound. The resulting solution has the following concentration: [00051] about 0.1 wt % to about 100 wt % of alpha ketocarbonyl compound; and [00052] about 1¡Á10-6 wt % to about 0.5 wt % of modifier. [00053] The reactor vessel (2) is charged with a supercritical solvent via flow line (3) containing a compressor (4) and a pressure control system (5). [00054] The organic flow is started at a reaction temperature of, for example, about 50 C. (Example 3) or 36 C. (Example 4). The solution set forth above is pumped into the fixed bed reactor (2) and contacted with hydrogen to start the hydrogenation reaction. [00055] Subsequently, the content of vessel (1) is continuously pumped into the fixed bed reactor with the same solution flow rate as in the process according to FIG. 1. [00056] The flow rate of the supercritical co-solvent is preferably from about 50 ml/minute to about 5000 ml/minute. [00057] When using a liquid alpha ketocarbonyl compound, the supercritical co-solvent is used with a flow rate of about 50 ml/minute to about 5000 ml/minute. [00058] The modifier flow rate is preferably from about 2¡Á10-11 to about 2¡Á10-4 mol/gcat/min. [00059] Hydrogen is continuously fed into the fixed bed reactor via flow line (7) containing a pressure control system (5). The hydrogen flow rate into the reactor was metered and monitored by a rotameter. [00060] Suitable hydrogen flow rates are from about 0.0001 mol/minute (2.4 ml/minute) to about 1 mol/minute (24000 ml/minute) such as for example from 5¡Á10-6 to about 10 mol/gcat/minute. [00061] The hydrogenation reaction can be carried out at a relatively low temperature ranging between about 20 C. to about 100 C., preferably from about 30 C. to about 60 C., such as for example from about 35 C. to about 50 C. The pressure is suitably adjusted to between about 2 bar to about 150 bar, preferably about 40 bar to about 100 bar.

13031-04-4 4,4-Dimethyldihydrofuran-2,3-dione 39, aTetrahydrofurans compound, is more and more widely used in various.

Reference£º
Patent; Roche Vitamins Inc.; US6646135; (2003); B1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Analyzing the synthesis route of 219823-47-9

219823-47-9 (R)-Tetrahydrofuran-3-yl 4-methylbenzenesulfonate 13837325, aTetrahydrofurans compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.219823-47-9,(R)-Tetrahydrofuran-3-yl 4-methylbenzenesulfonate,as a common compound, the synthetic route is as follows.

N-alpha-Methyl-lH-pyrazol-S-ylVS-rrphenylmethvDoxyi-S-Cbeta^-tetrahvdrofuran-S- yloxylbenzamide EPO A suspension of 3-hydroxy-N-(l-methyl-lH-pyrazol-3-yl)-5- [(phenylmethyl)oxy]benzamide (450 mg, 1.39 mmol), (3i?)-tetrahydrofuran-3-yl 4- methylbenzenesulfonate (507 mg, 2.09 mmol) and potassium carbonate (481 mg, 3.48 mmol) in acetonitrile (5 mL) was stirred in a Smith Creator microwave at 160C for 3 hours. The solvent was removed in vacuo and ethyl acetate added. The organics were washed with water (40 mL), brine (40 mL), dried (MgSO4), filtered and the solvent removed in vacuo to give a yellow foam which was chromatographed on silica, eluting with a gradient of 0-100% ethyl acetate in isohexane, to give the title compound as a white foam (452 mg). 1R NuMR delta (CDCl3): 2.09 – 2.14 (1Eta, m), 2.14 – 2.24 (1Eta, m), 3.68 (3Eta, s), 3.86 – 3.91 (IH, m), 3.94 – 3.98 (3H, m), 4.89 (IH, s), 5.03 (2H, s), 6.64 (IH, t), 6.85 (IH, s), 6.96 (IH, d), 7.07 (IH, t), 7.27 (IH, m), 7.33 – 7.41 (5H, m), 9.31 (IH, s); m/z 394 (M+H)+.

219823-47-9 (R)-Tetrahydrofuran-3-yl 4-methylbenzenesulfonate 13837325, aTetrahydrofurans compound, is more and more widely used in various.

Reference£º
Patent; ASTRAZENECA AB; ASTRAZENECA UK LIMITED; WO2007/7040; (2007); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Analyzing the synthesis route of 5061-21-2

5061-21-2 2-Bromo-4-butanolide 95463, aTetrahydrofurans compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5061-21-2,2-Bromo-4-butanolide,as a common compound, the synthetic route is as follows.

General procedure: To a stirred mixture of thiols 12a-12k (100 mmol) and K2CO3(27.64 g, 200 mmol) in DMF (120 mL) at room temperaturewas added alpha-bromobutyrolactone (10, 14.85 g, 90 mmol), andthe resulting mixture was stirred at room temperature until thecompletion of reaction as indicated by TLC analysis (typicallywithin 12 h).The reaction mixture was poured into ice-water (400 mL),and the mixture thus obtained was extracted with CH2Cl2 (3 ¡Á100 mL). The combined extracts were washed successively with10% aqueous Na2CO3 (2 ¡Á 100 mL) and 5% brine (3 ¡Á 100 mL),dried over anhydrous Na2SO4 and evaporated on a rotary evaporator to aord a residue, which was purifed by columnchromatography to yield 13a-13k after trituration withEtOAc/n-hexane if the product was a solid.

5061-21-2 2-Bromo-4-butanolide 95463, aTetrahydrofurans compound, is more and more widely used in various.

Reference£º
Article; Zhang, Xiansheng; Wu, Jingwei; Liu, Yuqiang; Xie, Yafei; Liu, Changying; Wang, Jianwu; Zhao, Guilong; Phosphorus, Sulfur and Silicon and the Related Elements; vol. 192; 7; (2017); p. 799 – 811;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Downstream synthetic route of 118399-28-3

118399-28-3 (R)-Benzyl (5-oxotetrahydrofuran-3-yl)carbamate 697924, aTetrahydrofurans compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.118399-28-3,(R)-Benzyl (5-oxotetrahydrofuran-3-yl)carbamate,as a common compound, the synthetic route is as follows.

0101 (5.04 g, 21.4 mmol) was added into a solution of methanamine (31.06g, 1 mol) in ethanol (100 ml) and stirred for 15 m, during this period 0101 was dissolved gradually and then new solid appeared. The solvent was evaporated under reduced pressure to obtain 0102 (5.016 g, 88%) as a white solid which was used in the next step reaction without further purification. LCMS: 267 [M+l]+; 1H NMR (DMSO-J6): delta 2.18 (dd, IH, J1 = 8.4 Hz5 J2 = 14.1 Hz), 2.31 (dd, IH, J1 = 6.3 Hz5 J2 = 14.4 Hz), 2.54 (d, 3H, J= 5.1 Hz), 3.33 (m, IH), 3.82 (m, IH), 4.703 (m, IH), 5.00 (s, 2H), 6.98 (d, IH, J= 8.4 Hz), 7.35 (m, 5H), 7.68 (m, IH).

118399-28-3 (R)-Benzyl (5-oxotetrahydrofuran-3-yl)carbamate 697924, aTetrahydrofurans compound, is more and more widely used in various.

Reference£º
Patent; CURIS, INC.; WO2009/36051; (2009); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

New learning discoveries about 2399-48-6

The synthetic route of 2399-48-6 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.2399-48-6,(Tetrahydrofuran-2-yl)methyl acrylate,as a common compound, the synthetic route is as follows.

To the 20 mL reaction tube was added 112 mg (0.5 mmol) of compound dibenzoylmethane, 7 mg (0.025 mmol) of K2CO3, 147 muL (1 mmol) of tetrahydrofurfural acrylate and 0.5 mL of tetrahydrofurfuryl alcohol at a temperature of 85 C The reaction was stirred for 24 hours and cooled to room temperature (18-25 C) and transferred to a small flask of 10 mL. The solvent was distilled off under reduced pressure and then passed through a column of neutral alumina. The developing solvent used was petroleum ether: ethyl acetate= 13: 1 to 4: 1 to give compound III-16 126 mg in 91% yield

The synthetic route of 2399-48-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Southwest University; Cai Guixin; Wen Jing; (13 pag.)CN105061125; (2017); B;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

New learning discoveries about 88675-24-5

The synthetic route of 88675-24-5 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.88675-24-5,Tetrahydrofuran-3-amine,as a common compound, the synthetic route is as follows.

To (2-bromo-6,7-dihydrothia.zolo[5 ,4-c]pyridin-5(4H)-yl)( 1 H-indol-2-yl)methanone (0.030 g, 0.083 mmol) was added tetrahydrofuran-3-amine (0.250 mL, 2.90 mmol). The mixture was stirred at 60¡ãC for 96 hours. The mixture was then purified directly by basic reverse phase HPLC to give the desired product (0.0023 g, 7percent yield)Rt (Method A) 3.22 mins, m/z 369 [M+H].

The synthetic route of 88675-24-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; AICURIS GMBH & CO. KG; DONALD, Alastair; URBAN, Andreas; BONSMANN, Susanne; WEGERT, Anita; GREMMEN, Christiaan; SPRINGER, Jasper; (376 pag.)WO2019/86141; (2019); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Downstream synthetic route of 5061-21-2

The synthetic route of 5061-21-2 has been constantly updated, and we look forward to future research findings.

5061-21-2, 2-Bromo-4-butanolide is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Starting with a solution of the appropriate amine (2.5 equiv) in dry MeCN or DCM, anhydrous K2CO3 (1 or 2 equiv) and tetrabutylammonium bromide (TBAB, 0.1 equiv) were added and the reaction mixture was stirred at room temp for 30 min. Subsequently, the reaction mixture was cooled down to 0 C and a solution of 3-bromo-dihydrofuran-2(3H)-one (2.5 equiv) in dry solvent (MeCN or DCM) was added. Stirring was continued at 0 C for 1 h and then at room temp for 3-50 h. The resultant mixture was filtered and the solvent evaporated. The oily residue was dissolved in solution of EtOH or MeOH with Et2O and acidified to pH 2-3 with saturated HCl solution in EtOH. After 2-7 days of at 5 C a hydrochloride salt precipitated. The salt was then purified by recrystallization from the appropriate solvent (EtOH or MeOH).

The synthetic route of 5061-21-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Wieckowski, Krzysztof; Bytnar, Justyna; Bajda, Marek; Malawska, Barbara; Salat, Kinga; Filipek, Barbara; Stables, James P.; Bioorganic and medicinal chemistry; vol. 20; 21; (2012); p. 6533 – 6544,12;; ; Article; Wi?ckowski, Krzysztof; Sa?at, Kinga; Bytnar, Justyna; Bajda, Marek; Filipek, Barbara; Stables, James P.; Malawska, Barbara; Bioorganic and Medicinal Chemistry; vol. 20; 21; (2012); p. 6533 – 6544;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Simple exploration of 88675-24-5

As the paragraph descriping shows that 88675-24-5 is playing an increasingly important role.

88675-24-5, Tetrahydrofuran-3-amine is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Compound TDI01113-4 (200 mg, 0.52 mmol) and tetrahydrofuran-3-amine (54.6 mg, 0.62 mmol) were dissolvedin N,N-dimethylformamide (10 mL), HATU (236 mg, 0.62 mmol) and diisopropylethylamine (268 mg, 2.08 mmol) wereadded, and the reaction was performed at room temperature overnight. Thin layer chromatography (dichloromethane/methanol =10:1) indicated the reaction was complete. Water (60 mL) was slowly added to the reaction solution, a largeamount of solid precipitated and was filtered after being stirred for 30 minutes. The solid was purified by high-performanceliquid chromatography to afford compound TDI01113 (56.2 mg, yellow solid, yield: 23.7percent).1H NMR (400 MHz, DMSO-d6) delta 13.05 (s, 1H), 9.67 (s, 1H), 8.93 (s, 1H), 8.90 (d, J = 6.4 Hz, 1H), 8.42 (dd, J = 8.4, 1.2Hz, 1H), 8.39 (d, J = 6.0 Hz, 1H), 8.23 (s, 1H), 8.18 (s, 1H), 8.10 (s, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.59 (s, 2H), 6.71 (d,J = 6.0 Hz, 1H), 4.51 – 4.45 (m, 1H), 3.91 – 3.85 (m, 2H), 3.77 – 3.71 (m, 1H), 3.66 – 3.63 (m, 1H), 2.24 – 2.15 (m, 1H),1.99 – 1.92 (m, 1H). MS m/z (ESI): 457.0 [M+H].

As the paragraph descriping shows that 88675-24-5 is playing an increasingly important role.

Reference£º
Patent; Beijing Tide Pharmaceutical Co., Ltd.; Zhao, Yanping; Wang, Hongjun; Li, Gong; Jiang, Yuanyuan; Li, Xiang; Zhou, Liying; Liu, Yanan; (235 pag.)EP3421465; (2019); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem