With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.88675-24-5,Tetrahydrofuran-3-amine,as a common compound, the synthetic route is as follows.
To a stirred solution of 4-chloro-2-fluoropyridine (0.094 g, 0.574 mmol) inDMSO (2 mL) cooled to 0 ¡ãC under a nitrogen atmosphere was added C52CO3 (0.374g, 1.148 mmol) and the mixture was stirred for 5 mm. Tetrahydrofuran-3-amine(0.05 g, 0.574 mmol) was added and the mixture heated to 90 ¡ãC for 14 h. Water was added and the solution was extracted with ethyl acetate (2 x 20 mL). The combined organic layers were washed with water (2×20 mL). The organic layers were dried over sodium sulfate and concentrated under reduced pressure. The residue was purified via silica gel chromatography (ethyl acetate and pet ether) to afford 4-chloro-N-(tetrahydrofuran-3-yl)pyridin-2-amine (0.05 g, 0.209 mmol, 36percent yield) as a yellow oil. LCMS (ESI) m/e 199.2 [(M+H) , calcd for C9H12C1N2O, 199.01; LC/MS retention time (method Al); tR = 1.73 mm.
The synthetic route of 88675-24-5 has been constantly updated, and we look forward to future research findings.
Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; BRONSON, Joanne J.; CHEN, Ling; DITTA, Jonathan L.; DZIERBA, Carolyn Diane; JALAGAM, Prasada Rao; LUO, Guanglin; MACOR, John E.; MAISHAL, Tarun Kumar; NARA, Susheel Jethanand; RAJAMANI, Ramkumar; SISTLA, Ramesh Kumar; THANGAVEL, Soodamani; (318 pag.)WO2017/59080; (2017); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem